首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialyl oligosaccharides have long been considered to be the sole receptors for influenza virus. However, according to [1] some viruses are able to grow in sialic-free MDCK cells. Here we attempted to reveal a possible second, non-sialic receptor, hypothesizing the involvement of additional carbohydrate lectin recognition in influenza virus reception process, first of all in situations when a lectin of the host cell could recognize the viral carbohydrate ligand. We tested the presence of galactose- and sialic acid-binding lectins, as well as mannoside- and sulfo-N-acetyllactosamine-recognizing properties of MDCK and Vero cells using polyacrylamide neoglycoconjugates and antibodies. MDCK cells bind galactoside probes stronger than Vero cells, whereas Vero cells bind preferentially sialoside, mannoside and various sulfo-oligosaccharide probes. The probing of viruses with the neoglycoconjugates revealed specific 6′-HSO 3 LacNAc (but not other sulfated oligosaccharides) binding property of A and B human strains. Affinity of 6′-HSO 3 LacNAc probe was comparable with affinity of 6′-SiaLac probe but the binding was not inhibited by the sialooligosaccharide.  相似文献   

2.
Subcutaneous injection of murine macrophage cell line P388D1 into syngeneic DBA/2 produced tumors, which upon solubilization with 40 mM octyl glucoside contained acetylated low density lipoprotein binding activity. The tumor-derived receptor specifically bound acetylated low density lipoprotein with an affinity of approximately 3 X 10(-8) M but did not bind low density lipoprotein or high density lipoprotein. It was identical in binding specificity, affinity, and Pronase sensitivity to the receptor in intact cells or that obtained from solubilized cultured cell membranes. Partial purification of the receptor was achieved by solubilizing tumors with 1% Triton X-100 followed by chromatography on polyethyleneimine cellulose. After elution with a NaCl gradient in the presence of octyl glucoside and association with liposomes, a 287-fold purification of the receptor was achieved. The receptor was identified by specific ligand blotting as a 260,000-dalton protein having a pI of approximately 6.0. Binding to the receptor by acetylated low density lipoprotein, malondialdehyde-modified low density lipoprotein, and maleic anhydride-modified serum albumin was demonstrated by ligand blotting. A single receptor protein can, therefore, account for the binding of multiple types of charge-modified lipoprotein and nonlipoprotein ligands to the macrophage cell surface.  相似文献   

3.
Gelatin-binding chymotryptic fragments from placental fibronectin contain polylactosamine carbohydrates (Zhu, B.C.R., Fisher, S.R., Pande, H., Calaycay, J. Shively, J.E., and Laine, R.A. (1984) J. Biol. Chem. 259, 3962-3970). We have separated polylactosamine-containing gelatin-binding fragments of placental fibronectin from their counterparts containing smaller "complex" N-linked saccharides using Sephadex G-200 gel permeation chromatography. The peptide portions of both fragments have similar amino acid composition and N-terminal sequence (see reference above). The strength of binding of these two glycosylation types of chymotryptic fragments to gelatin differs as shown by the following experiments. 1) Upon urea gradient elution of affinity-bound fibronectin fragments from gelatin-Sepharose chromatography, the apex of the elution peak for polylactosamine-containing fragments occurs at 2.0 M urea while the peak for complex N-linked carbohydrate-containing fragments maximized at 2.5 M urea indicating a tighter binding. Removal of polylactosamine sequences from the former glycopeptide by endo-beta-galactosidase digestion caused the elution peak for this fraction to change from 2.0 to 2.5 M, the same as for the complex N-linked carbohydrate-containing glycopeptide. 2) Competitive displacement experiments give an apparent dissociation constant of polylactosamine-containing fragments at 3 X 10(-9) M whereas this constant for complex carbohydrate-containing fragments is 1 X 10(-9) M. These results indicate that the binding of placental fibronectin to gelatin is weakened by the presence of high molecular weight polylactosamine carbohydrate. To our knowledge this is the first report that the type and extent of glycosylation of a glycoprotein can affect its binding affinity to a proteinacious ligand. Thus, fetal placental fibronectin may have different biological properties than fibronectins containing only the smaller N-linked complex carbohydrate.  相似文献   

4.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

5.
Isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements demonstrate that a chemically and enzymatically prepared form of porcine submaxillary mucin that possesses a molecular mass of approximately 10(6) daltons and approximately 2300 alpha-GalNAc residues (Tn-PSM) binds to the soybean agglutinin (SBA) with a K(d) of 0.2 nm, which is approximately 10(6)-fold enhanced affinity relative to GalNAcalpha1-O-Ser (Tn), the pancarcinoma carbohydrate antigen. The enzymatically derived 81 amino acid tandem repeat domain of Tn-PSM containing approximately 23 alpha-GalNAc residues binds with approximately 10(3)-fold enhanced affinity, while the enzymatically derived 38/40 amino acid cleavage product(s) of Tn-PSM containing approximately 11-12 alpha-GalNAc residues shows approximately 10(2)-fold enhanced affinity. A natural carbohydrate decorated form of PSM (Fd-PSM) containing 40% of the core 1 blood group type A tetrasaccharide, and 58% peptide-linked GalNAcalpha1-O-Ser/Thr residues, with 45% of the peptide-linked alpha-GalNAc residues linked alpha-(2,6) to N-glycolylneuraminic acid, shows approximately 10(4) enhanced affinity for SBA. Vatairea macrocarpa lectin (VML), which is also a GalNAc binding lectin, displays a similar pattern of binding to the four forms of PSM, although there are quantitative differences in its affinities as compared with SBA. The higher affinities of SBA and VML for Tn-PSM relative to Fd-PSM indicate the importance of carbohydrate composition and epitope density of mucins on their affinities for lectins. The higher affinities of SBA and VML for Tn-PSM relative to its two shorter chain analogs demonstrate that the length of a mucin polypeptide and hence total carbohydrate valence determines the affinities of the three Tn-PSM analogs. The results suggest a binding model in which lectin molecules "bind and jump" from alpha-GalNAc residue to alpha-GalNAc residue along the polypeptide chain of Tn-PSM before dissociating. The complete thermodynamic binding parameters for these mucins including their binding stoichiometries are presented. The results have important implications for the biological activities of mucins including those expressing the Tn cancer antigen.  相似文献   

6.
Camphor binding to a possible receptor of rat olfactory epithelium has been studied within the ligand concentration range 10(-11)-10(-6) M. At these concentrations camphor is bound by a set of receptors. They are distinguished by both the affinity to the ligand (K1 = 5 X 10(-10) M, K2 = 3.5 X 10(-8) M, K3 approximately equal to 10(-6) M) and their amount in the epithelium. The differences in the affinities are due to different values of the association rate constant of camphor (k1), which varies from 10(6) M-1 X s-1 for the receptors with high affinity up to 2 X 10(2) M-1 X s-1 for those with low affinity. These data are discussed in terms of equilibrium and kinetic models of the receptor-stimulus interaction.  相似文献   

7.
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (K(D) < 1 micro M) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and approximately 100 micro M(-1) respectively, indicate that they are not capable of facilitating oxygen transport.  相似文献   

8.
BACKGROUND: Cyanovirin-N (CVN) is a novel, 11 kDa cyanobacterial protein that potently inhibits viral entry by diverse strains of HIV through high-affinity carbohydrate-mediated interactions with the viral envelope glycoprotein gp120. CVN contains two symmetry-related carbohydrate binding sites of differing affinities that selectively bind to Man(8) D1D3 and Man(9) with nanomolar affinities, the carbohydrates that also mediate CVN:gp120 binding. High-resolution structural studies of CVN in complex with a representative oligosaccharide are desirable for understanding the structural basis for this unprecedented specificity. RESULTS: We have determined by multidimensional heteronuclear NMR spectroscopy the three-dimensional solution structure of CVN in complex with two equivalents of the disaccharide Manalpha1-2Manalpha, a high-affinity ligand which represents the terminal-accessible disaccharide present in Man(8) D1D3 and Man(9). The structure reveals that the bound disaccharide adopts the stacked conformation, thereby explaining the selectivity for Man(8) D1D3 and Man(9) over other oligomannose structures, and presents two novel carbohydrate binding sites that account for the differing affinities of the two sites. The high-affinity site comprises a deep pocket that nearly envelops the disaccharide, while the lower-affinity site comprises a semicircular cleft that partially surrounds the disaccharide. The approximately 40 A spacing of the two binding sites provides a simple model for CVN:gp120 binding. CONCLUSIONS: The CVN:Manalpha1-2Manalpha complex provides the first high-resolution structure of a mannose-specific protein-carbohydrate complex with nanomolar affinity and presents a new carbohydrate binding motif, as well as a new class of carbohydrate binding protein, that facilitates divalent binding via a monomeric protein.  相似文献   

9.
The concepts of rational design and solid phase combinatorial chemistry were used to develop affinity adsorbents for glycoproteins. A detailed assessment of protein–carbohydrate interactions was used to identify key residues that determine monosaccharide specificity, which were subsequently exploited as the basis for the synthesis of a library of glycoprotein binding ligands. The ligands were synthesised using solid phase combinatorial chemistry and were assessed for their sugar‐binding ability with the glycoenzymes, glucose oxidase and RNase B. Partial and completely deglycosylated enzymes were used as controls. The triazine‐based ligand, histamine/tryptamine (8/10) was identified as a putative glycoprotein binding ligand, since it displayed particular affinity for glucose oxidase and other mannosylated glycoproteins. Experiments with deglycosylated control proteins, specific eluants and retardation in the presence of competing sugars strongly suggest that the ligand binds the carbohydrate moiety of glucose oxidase rather than the protein itself. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Ten of the 11 known human siglecs or their murine orthologs have been evaluated for their specificity for over 25 synthetic sialosides representing most of the major sequences terminating carbohydrate groups of glycoproteins and glycolipids. Analysis has been performed using a novel multivalent platform comprising biotinylated sialosides bound to a streptavidin-alkaline phosphatase conjugate. Each siglec was found to have a unique specificity for binding 16 different sialoside-streptavidin-alkaline phosphatase probes. The relative affinities of monovalent sialosides were assessed for each siglec in competitive inhibition studies. The quantitative data obtained allows a detailed analysis of each siglec for the relative importance of sialic acid and the penultimate oligosaccharide sequence on binding affinity and specificity. Most remarkable was the finding that myelin-associated glycoprotein (Siglec-4) binds with 500-10,000-fold higher affinity to a series of mono- and di-sialylated derivatives of the O-linked T-antigen (Galbeta(1-3)-GalNAc(alpha)OThr) as compared with alpha-methyl-NeuAc.  相似文献   

11.
Human fibroblast interferon binds to a concanavalin A-agarose (Con A-Sepharose) equilibrated with methyl alpha-D-mannopyranoside, or levan; in contrast, it is only partially retarded on a similar column equilibrated with ethylene glycol. Interferon does not bind, however, to a lectin column equilibrated with both methyl alpha-D-mannopyranoside and ethylene glycol. Thus, a hydrophobic interaction between fibroblast interferon and the immobilized lectin seems to account for a large portion of the binding forces involved. Other hydrophobic solutes, such as dioxane, 1, 2-propanediol, and tetraethylammonium chloride, were found equally or more efficient than ethylene glycol in displacing interferon from the lectin column. The elution pattern of interferon from a concanavalin A-agarose (Con A-Sepharose) column, at a constant ehtylene glycol concentration and with an increasing mannoside concentration, reveals the existence of four distinct interferon components. The selective adsorption to and elution from a concanavalin A-agarose (Con A-Sepharose) column resulted in about a 3000-fold purification of human fibroblast interferon and complete recovery of activity. The specific activity of the partially purified interferon preparation is about 5 X 10(7) units per mg of protein. The chromatographic behavior of human leukocyte interferon is remarkable in that it does not bind to concanavalin A-agarose at all indicating the absence of carbohydrate moieties recognizable by the lectin, or if present, their masked status. When concanavalin A was coupled to an agarose matrix (cyanogen bromide activated) at pH 8.0 and 6.0 human fibroblast interferon bound to both lectin-agarose adsorbents and could be recovered with methyl alpha-D-mannopyranoside. Concanavalin A, immobilized directly on agarose matrix at pH 8.0 and 6.0, thus displays only carbohydrate recognition toward interferon. By contrast, unless a hydrophobic solute was included in the solvent containing methyl mannoside, human fibroblast interferon could not be recovered from concanavalin A-agarose coupled at pH 9.0. When concanavalin A was immobilized via molecular arms, in tetrameric as well as dimeric forms, the binding of interferon again occurred exclusively through carbohydrate recognition. Thus, the hydrophobic interaction can be eliminated by appropriate immobilization of the lectin, and then adsorbed glycoproteins, as exemplified here by interferon, can be recovered readily with methyl mannoside alone.  相似文献   

12.
For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (K(A)>10(8)M(-1); K(D)<10(-8)M), a new challenge arises: to measure these values accurately. Isothermal titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate.  相似文献   

13.
Insulin-like growth factor binding protein-6 is abundant in cerebrospinal fluid and has a marked preferential binding affinity for IGF-II over IGF-I. The present study demonstrates that IGFBP-6 is O-glycosylated but not N-glycosylated. Carbohydrate analysis revealed the presence of approximately 20-30 carbohydrate residues/molecule. Galactosamine, galactose and sialic acid were most abundant, with glucosamine and fucose present in lower concentrations. Mannose was not detected. Enzymatic deglycosylation did not alter the high affinity of IGF binding protein-6 for IGF-II (Ka 4.4 +/- 2.2 x 10(11) M-1) or its preference for IGF-II over IGF-I. Glycosylation of IGFBP-6 may affect its secretion, in vivo stability or localization, but does not affect its ligand binding properties.  相似文献   

14.
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.  相似文献   

15.
The extracellular portion of the macrophage mannose receptor is composed of several cysteine-rich domains, including a fibronectin type II repeat and eight segments related in sequence to Ca(2+)-dependent carbohydrate-recognition domains (CRDs) of animal lectins. Expression of portions of the receptor in vitro, in fibroblasts and in bacteria, has been used to determine which of the extracellular domains are involved in binding and endocytosis of ligand. The NH2-terminal cysteine-rich domain and the fibronectin type II repeat are not necessary for endocytosis of mannose-terminated glycoproteins. CRDs 1-3 have at most very weak affinity for carbohydrate, so the carbohydrate binding activity of the receptor resides in CRDs 4-8. CRD 4 shows the highest affinity binding and has multispecificity for a variety of monosaccharides. However, CRD 4 alone cannot account for the binding of the receptor to glycoproteins. At least 3 CRDs (4, 5, and 7) are required for high affinity binding and endocytosis of multivalent glycoconjugates. In this respect, the mannose receptor is like other carbohydrate-binding proteins, in which several CRDs, each with weak affinity for single sugars, are clustered to achieve high affinity binding to oligosaccharides. In the mannose receptor, these multiple weak interactions are achieved through several active CRDs in a single polypeptide chain rather than by oligomerization of polypeptides each containing a single CRD.  相似文献   

16.
It has been proposed that mammalian sperm bind species-specifically to carbohydrate chains of zona pellucida glycoproteins at fertilization. Although the sperm ligand carbohydrate chains have been characterized in mice and pigs, the existence of the ligands of other mammals remains unclear. In order to explore the bovine sperm ligand, two in vitro competition assay methods were applied. As a result, a high-mannose-type carbohydrate chain, Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAc, which is the major neutral chain in bovine egg zona glycoproteins, was shown to possess bovine sperm ligand activity. When nonreducing terminal alpha-mannosyl residues were eliminated from the zona glycoproteins by alpha-mannosidase digestion, the ligand activity was reduced, indicating that the alpha-mannosyl residues play an essential role in bovine sperm-egg binding. The number of sperm binding to eggs was reduced to about one-half after fertilization. The ligand-active high-mannose-type chain may be buried after fertilization, since its amount remains unchanged. Pretreatment of bovine sperm with the sperm ligand-carbohydrate chain significantly inhibited penetration of the sperm into oocyte and the male pronucleus formation. Thus, a correlation between the sperm ligand activity and in vitro fertilization rate was observed.  相似文献   

17.
Rabbit antisera to bovine serum albumin (BSA) conjugates of 3-(O-carboxymethyl)oximino-, 7-(O-carboxymethyl)oximino- and 7β-hemi-succinamido derivatives of 5α-dihydrotestosterone (DHT) were applied to four affinity columns bearing respectively these three antigens and a fourth 3β-hemisuccinamido-5α-androstan-17β-ol-BSA antigen as ligands.The antibodies retained on the columns were totally desorbed by an excess of DHT, but in DHT-bound form, whereas 1M mh4oh and electrophoretic elution allowed a recovery of 60% of the retained antibodies in unbound form. The antibody fractions (40%) remaining on the columns after NH4OH or electrophoretic elution were totally recovered by addition of DHT following the electrophoretic elution only. All the DHT-bound fractions were dissociated by dialysis but with a 70% loss of binding activity.The association constants for DHT of most of the antibody fractions were similar to those of the crude antisera (Ka ~ 1010M?1), with the exception of the antibodies recovered from the antibody fractions resistant to electrophoretic elution which had higher affinities (Ka ~ 2.0 to 30 × 1010M?1).The specificity charts of the antisera were in some cases considerably modified after fractionation, according to the choice of the ligand employed in the affinity columns as well as of the elution methods. The lowest cross-reactions with testosterone were observed after elution with 1M NH4OH (17–20%) or electrophoresis (23–25%) of the anti-7-(O-carboxymethyl)oximino-DHT antisera fractions retained on 3β-hemisuccinamido-5α-androstan-17β-ol-BSA-Sepharose columns.  相似文献   

18.
A set of bivalent mannose 6-phosphonate 'molecular rulers' has been synthesized to examine ligand binding to the M6P/IGF2R. The set is estimated to span a P-P distance range of 16-26A (MMFF energy minimization on the hydrated phosphonates). Key synthetic transformations include sugar triflate displacement for phosphonate installation and Grubbs I cross-metathesis to achieve bivalency. Relative binding affinities were tested by radioligand displacement assays versus PMP-BSA (pentamannosyl phosphate-bovine serum albumin). These compounds exhibit slightly higher binding affinities for the receptor (IC(50)'s=3.7-5 microM) than the parent, monomeric mannose 6-phosphonate ligand and M6P itself (IC(50)=11.5+/-2.5 microM). These results suggest that the use of an alpha-configured anomeric alkane tether is acceptable, as no significant thermodynamic penalty is apparently paid with this design. On the other hand, the modest gains in binding affinity observed suggest that this ligand set has not yet found true bivalent interaction with the M6P/IGF2R (i.e., simultaneous binding to two distinct M6P-binding pockets).  相似文献   

19.
Quantitative affinity chromatography on uridine-5'-(Sepharose-4-aminophenylphosphoryl)-2'(3')-phosphate was developed for the study of binding of ribonuclease species to nucleotide ligands. Elution of the native species ribonuclease-A and -S on the afffinity matrix in 0.4 M ammonium acetate, pH 5.2, containing various amounts of the soluble competing ligand 2'-cytidine monophosphate, reveals an inverse response of elution volume to concentration of soluble ligand. This response conforms to behavior expected for the competing binding equilibria enzyme-soluble ligand and enzyme-insoluble ligand. A-NALYSIS OF ELUTION DATA ALLOWS CALCULATION OF KI and KIM, the dissociation constants, respectively, for the soluble and insoluble protein-ligand complexes. The values of these chromatographically derived constants are similar to values of dissocation constants determined in solution by kinetics of inhibition by 2'-cytidine monophosphate and uridine-5'-(j-aminophenylphosphoryl)-2'(3')-phosphate. Successful competitive elution experiments with [p-F-Phe8]semisynthetic ribonuclease-S' and individual elution trials for [4-F-His12]semisynthetic ribonuclease-S' indicate the utility of the quantitative affinity chromatographic technique for determination of ligand binding properties of ribonuclease derivatives, including inactive species. Nonbiospecific aspects of the interaction of ribonuclease with the affinity matrix in ammonium acetate buffers of concentrations 0.1 M and below were noted, delinating limits of conditions allowing the biospecificity needed for ligand-binding analyses by competitive elution. The dependence of ribonuclease competitive elution behavior on the amount of protein eluted also was examined and related to theoretical considerations in the quantitative application of affinity chromatography.  相似文献   

20.
Two affinity columns comprising immobilized concanavalin A (Con A), Con A-Sepharose and Con A-XP3507, were evaluated for their purifying ability for the glycoprotein allergen Ag7 from a partially purified extract of mugwort pollen. The most pronounced difference between the two columns was the nature of their nonspecific interactions; hydrophobic interactions were dominant with Con A-XP3507, whereas ionic interactions were dominant with Con A-Sepharose. Both Con A-columns were effective for purifying Ag7 with a recovery of 50% after specific elution with displacing sugars. The inclusion of 1.0 M NaCl and 20% ethylene glycol in the elution medium was useful for desorbing nonspecifically bound material, prior to specific elution of adsorbed Ag7 in the presence of the displacing sugars, alpha-methyl glucoside and alpha-methyl mannoside. The most efficient purification of Ag7 was achieved with Con A-Sepharose at room temperature rather than at 4 degrees C. Affinity chromatography with Con A-XP3507 resulted in a slightly more contaminated product (purity 54%) than with Con A-Sepharose (purity 64%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号