首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural aggregates of Baby Hamster Kidney cells were grown in stirred vessels operated as repeated-batch cultures during more than 600 hours. Different protocols were applied to passaging different fractions of the initial culture: single cells, large size distributed aggregates and large aggregates. When single cells or aggregates with the same size distribution found in culture are used as inoculum, it is possible to maintain semi-continuous cultures during more than 600 hours while keeping cell growth and viability. These results suggest that aggregate culture in large scale might be feasible, since a small scale culture can easily be used as inoculum for larger vessels without noticeable modification of the aggregate chacteristics. However, when only the large aggregates are used as inoculum, it was shown that much lower cell concentrations are obtained, cell viability in aggregates dropping to less than 60%. Under this selection procedure, aggregates maintain a constant size, larger than under batch experiments, up to approximately 400 hours; after this time, aggregate size increases to almost twice the size expected from batch cultures.  相似文献   

2.
Size distributions and glucose and pH profiles of aggregates of the d-(-)-lactic acid-producing organism Bacillus laevolacticus were measured. The organisms were grown in continuous culture with a medium glucose concentration of either 280 or 110 mM. A maximal aggregate diameter of 2.2 mm, with a Sauter mean of 1.46 mm, was determined for the former culture condition, whereas aggregates from a culture with 110 mM glucose input had a maximal diameter of 1.9 mm (Sauter mean of 1.07 mm). A pH gradient of approximately 2 U was observed for large aggregates (above 1.5 mm). In smaller aggregates (0.75 mm), the pH value in the interior part was approximately 0.4 U lower than that in the culture fluid. It could be concluded that, in cultures with the high glucose input, lactic acid accumulated within the aggregates to such an extent that metabolism in the central region of the larger aggregates could not proceed further. In these cultures, approximately 90% of the total biomass was active. In aggregates from cultures with a low glucose input, glucose only partly penetrated the larger-sized aggregates, and the activity of this culture was reduced to approximately 70% of the biomass. These aggregates were found to decrease in size after prolonged periods of cultivation. It is suggested that this is caused by glucose depletion in the interior of the aggregates. It is concluded that the availability of glucose is an important factor in determining the size of aggregates of B. laevolacticus.  相似文献   

3.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
Changes in animal cell natural aggregates in suspended batch cultures   总被引:4,自引:0,他引:4  
Some anchorage-dependent animal cells can form natural aggregates in stirred tanks. Baby hamster kidney (BHK) natural aggregates are described and characterized. Total cell concentration and viability could be obtained after aggregate mechanical aissociation, with negligible cell lysis and no change in cell membrane permeability. During a normal batch run, aggregates were formed immediately after inoculation, a few spherical aggregates increasing size during the initial growth phase. At the end of the growth phase, an increase in aggregate concentration was observed, without a considerable increase in aggregate diameter. At the end of the batch run, 160 h after inoculation, aggregates disintegrated into smaller, non-spherical units, following a sharp viability decrease. Cell concentrations of 1. 2 · 106 cells/ml were obtained, with 60% of the total cells being in aggregates; the cell concentration in aggregates achieved 5 · 108 cells/ml, with a porosity of 55%. Viability was consistently in the range 85–90%, both for aggregate and suspended cells.  相似文献   

5.
钙离子对293细胞结团和生长的影响   总被引:1,自引:0,他引:1  
赵亮  朱明龙  张旭  谭文松   《生物工程学报》2005,21(3):482-485
分别在有血清和无血清条件下、方瓶和转瓶中考察了Ca2+ 对2 93细胞结团和生长的影响。通过实验发现,Ca2+ 浓度在0 1~1 0mmol L范围内对2 93细胞的贴壁和结团性质有显著影响,而对生长影响不大。结果表明:有血清贴壁培养时,较高的Ca2+ 浓度有利于细胞贴壁;无血清悬浮培养中,Ca2+ 浓度越高,细胞结团越严重,细胞结团达到平衡后的平均粒径(D ,μm)与Ca2+ 浓度(c,mmol L)在0.1~0.5mmol L范围内可用一次函数D =58.65c +16.96描述,细胞结团尺寸是可调控的;而细胞在不同的Ca2+ 浓度下有相似的生长规律。  相似文献   

6.
Prolonged exposure to aluminium may impact health. Aluminium’s deleterious effects are mostly attributed to its selective accumulation in particular organs and cell types. Occupational exposure to aluminium is allied with a reduced level of serum prolactin, a stress peptide hormone mainly synthesised and secreted by the anterior pituitary lactotrophs. Our aim was to study the effect of aluminium on the viability of rat lactotrophs in primary suspension cultures where multicellular aggregates tend to form, comprising approximately two thirds of the total cell population as confirmed by confocal microscopy. Flow cytometric light scattering of calcein acetoxymethyl ester and ethidium homodimer-1 labelled cells was used to define subpopulations of live and dead cells in heterogeneous suspensions comprised of single cells and multicellular aggregates of distinct size. Concentration-dependent effects of AlCl3 were observed on aggregate size and cell survival. After 24-h exposure to 3 mM AlCl3, viability of single cells declined from 5% to 3%, while in multicellular aggregates, viability declined from 23% to 20%. The proportion of single cells increased from 30% to 42% within the same concentration range, while in large aggregates, the proportion remained approximately constant representing 35% of the cell suspension. In large aggregates, cell viability (75%) remained unaltered after exposure to AlCl3 concentrations up to 300 μM, while in single cells, viability was halved at 30 μM. In conclusion, our finding indicates that prolonged exposure to aluminium may lead to significant loss of pituitary cells.  相似文献   

7.
The morphology of Methanosarcina mazei was controlled by magnesium, calcium, and substrate concentrations and by inoculum size; these factors allowed manipulation of the morphology and interconversions between pseudosarcinal aggregates and individual, coccoid cells. M. mazei grew as aggregates in medium with a low concentration of catabolic substrate (either 50 mM acetate, 50 mM methanol, or 10 mM trimethylamine) unless Ca2+ and Mg2+ concentrations were high. Growth in medium high in Ca2+, Mg2+, and substrate (i.e., 150 mM acetate, 150 mM methanol, or 40 mM trimethylamine) converted pseudosarcinal aggregates to individual cocci. In such media, aggregates separated into individual cells which continued to grow exclusively as single cells during subsequent transfers. Conversion of single cells back to aggregates was complicated, because conditions which supported the aggregated morphology (e.g., low calcium or magnesium concentration) caused lysis of coccoid inocula. We recovered aggregates from coccoid cells by inoculating serial dilutions into medium high in calcium and magnesium. Cells from very dilute inocula grew into aggregates which disaggregated on continued incubation. However, timely transfer of the aggregates to medium low in calcium, magnesium, and catabolic substrates allowed continued growth as aggregates. We demonstrated the activity of the enzyme (disaggregatase) which caused the dispersion of aggregates into individual cells; disaggregatase was produced not only during disaggregation but also in growing cultures of single cells. Uronic acids, the monomeric constituents of the Methanosarcina matrix, were also produced during disaggregation and during growth as coccoids.  相似文献   

8.
For the commercially established process of paclitaxel production with Taxus chinensis plant cell culture, the size of plant cell aggregates and phenotypic changes in coloration during cultivation have long been acknowledged as intangible parameters. So far, the variability of aggregates and coloration of cells are challenging parameters for any viability assay. The aim of this study was to investigate simple and non-toxic methods for viability determination of Taxus cultures in order to provide a practicable, rapid, robust and reproducible way to sample large amounts of material. A further goal was to examine whether Taxus aggregate cell coloration is related to general cell viability and might be exploited by microscopy and image analysis to gain easy access to general cell viability. The Alamar Blue assay was found to be exceptionally eligible for viability estimation. Moreover, aggregate coloration, as a morphologic attribute, was quantified by image analysis and found to be a good and traceable indicator of T. chinensis viability.  相似文献   

9.
Three-dimensional (3D) and two-dimensional (2D) cultures of hepatocytes in various concentrations (0.3–0.7%) of agarose gel revealed that the hepatocytes under 3D cultures in 0.3% agarose gel possess long-term (>3 weeks) viability, significant self-assembly to form tissue like aggregates, low lactate dehydrogenase release and high albumin synthesis. These were in contrast to 2D culture of hepatocytes. Our results suggest that the 3D culture of hepatocytes in agarose gel favors aggregate formation of functionally active cells and would be useful for liver transplantation as well as to analyze hepatocytes biology.  相似文献   

10.
Cell-cell interaction and the extracellular matrix (ECM) are believed to play essential roles duringin vitro culturing of primary hepatocytes in the control of differentiation and in the maintenance of tissue specific functions. The objective of this study was to examine the effects of degree of cell-cell contact (DCC) on liver specific function of rat primary hepatocytes. Hepatocyte aggregates with various degrees of cell-cell contact,i.e., dispersed cells, longish aggregate, rugged aggregate, and smooth spheroid were obtained at 1, 5–6, 15–20, and 36–48 hrs, respectively in suspension cultures grown in spinner flasks embedded in Caalginate bead and collagen gel in order. The smooth spheroids displayed a decrease in viability and functional activities. This may result from mass transfer limitation and shear damage caused by agitation during aggregation. The rugged aggregate showed a higher viability and albumin secretion rate than the dispersed cells or the other aggregates. This result indicates the possible enhancement of a bioartificial liver's (BAL) performance using primary hepatocytes and the reduction in time to prepare a BAL through optimization of the immobilization time.  相似文献   

11.
Established cell lines and primary cultures derived from somatic cells of the testis have been used to study cell-cell interactions. Primary cultures of Sertoli cells or Sertoli-derived cell lines from the mouse (TM4) and rat (TR-ST) will aggregate when plated on monolayers of primary cultures of peritubular myoid cells or a rat (TR-M) cell line which has many properties of peritubular myoid cells. Time-lapse cinematography and scanning and transmission electron microscopy reveal that Sertoli cells formed aggregates after 1 day in coculture, display surface activity and move on the monolayer. When these aggregates touch one another, they rapidly combine. By the 4th day of culture, spherical aggregates are composed of 50 to 200 cells. They do not display surface activity or movement on the myoid monolayer. On the 5th and 6th day of culture most spherical aggregates have flattened to form dome-shaped aggregates in close association with the monolayer. Cells in the aggregates are characterized by long microvilli and some ruffles. In large aggregates, cells sometimes form close associations within the aggregates although junctions are seldom observed. Sertoli-derived cell lines will not aggregate on monolayers of Leydig-derived (TM3) or testicular endothelial-derived (TR-1) cell lines. Neither TM3 nor TR-1 cells will aggregate when plated on myoid monolayers. The TR-M cells produced an extensive extracellular matrix beneath the cells which contains collagen, an amorphous globular material resembling elastin and a fibrous noncollagenous component. Sertoli cells plated on this matrix will not aggregate. Thus the aggregation of Sertoli cells on myoid cell monolayers is cell type, but not species dependent and not determined solely by extracellular matrix components produced by TR-M cells.  相似文献   

12.
H6 embryonal carcinoma cells form aggregates of cells in culture medium which contains 2 mM calcium. These aggregates are described as uncompacted, indicating that the individual cells of the aggregate are spherical and are in limited contact with each other. In contrast, compaction of the aggregate, induced by increasing the calcium concentration, results in a tight mass of cells flattened against one another and connected by intercellular junctions. At least 85-97% of the aggregates undergo compaction in 7 mM calcium and are subsequently decompacted if removed to 2 mM calcium. Since calcium ionophore A23187 does not induce compaction, extracellular rather than intracellular calcium seems to be the limiting factor. We have demonstrated that this calcium-induced morphogenetic change is sensitive to inhibition by agents which also prevent the calcium-dependent compaction of the 8-cell mouse embryo. The cytoskeletal-binding drugs tetracaine HCl, colcemid, vinblastine, colchicine, and cytochalasin B each inhibit compaction of H6 aggregates. Interference at surface molecule sites by exposure to the lectins wheat germ agglutinin or concanavalin A or by interruption of glycosylation with exposure to tunicamycin, or by reaction with anti-H6 Fab or anti-F9, also prevent compaction. Since the mouse embryo and embryonal carcinoma cells share certain processes which are involved in initiating and maintaining compaction, these processes and their subsequent roles in differentiation may be examined using embryonal carcinoma cell aggregates.  相似文献   

13.
The relationships between aggregate cell types, cell growth, and the triptolide, wilforgine, and wilforine content in aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. were examined. Aggregate cells larger than 2?mm grew quickly and constituted the majority of the white aggregates. The accumulation of triptolide was strongly correlated with the size of the aggregates and the length of the culture period. The aggregates 0.5?C2?mm in diameter accumulated higher triptolide content than those with other sizes throughout the culture. However, the size of the aggregate cells did not significantly affect on the wilforgine and wilforine content. Two other kinds of aggregate cells, the brown and green aggregate cells, also formed in the suspension cultures. The smallest aggregates (0.1?C0.5?mm) had a lower biomass and growth rate and had more chloroplasts and higher alkaloid content. The results of this study can be used to improve the selection process for the mass production of triptolide, wilforgine, and wilforine from cell suspension cultures.  相似文献   

14.
Effects of simulated microgravity on DU 145 human prostate carcinoma cells   总被引:1,自引:0,他引:1  
The high aspect rotating-wall vessel (HARV) was recently designed by NASA to cultivate animal cells in an environment that simulates microgravity. This work examines the effects of HARV cultivation on DU 145 human prostate carcinoma cells. In the HARV, these prostate cells grew in suspension on Cytodex-3 microcarrier beads to form bead aggregates with extensive three-dimensional growth between beads and on the aggregate surface. HARV and spinner-flask control cultures of DU 145 cells had similar doubling times, but the former was characterized by a higher percentage of G(1)-phase cells, larger bead aggregates, enhanced development of filopodia and microvilli-like structures on the aggregate surface, and stronger staining for select cytoskeletal proteins (cytokeratins 8 and 18, actin, and vimentin). When compared with static controls grown in a T-flask and Transwell insert, HARV cultures grew more slowly and differences in the cell cycle and immunostaining became more pronounced. These results suggest that HARV cultivation produced a culture that was less aggressive from the perspective of proliferation, more differentiated and less pliant than any of the three control cultures examined in this work. Possible factors effecting this change are discussed including turbulence and three-dimensional growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Cell-cell interactions and cell rearrangements play important roles during development. Aggregates of Hydra cells reorganize into the two epithelial layers and subsequently form a normal animal. Examination of the formation of the two layers under various situations, indicates that the motility of endodermal epithelial cells, but not the differential adhesive forces of the two types of epithelial cells, plays the critical role in setting up the two epithelial layers. (1) When aggregates of ectodermal cells and of endodermal cells were placed in direct contact, the endodermal cells migrated into the interior of the ectodermal aggregate. This process was completely inhibited by cytochalasin B although initial firm attachment between the two aggregates was not blocked. (2) A single endodermal epithelial cell placed in contact with an ectodermal aggregate, actively extended pseudopod-like structures and migrated toward the center of the ectodermal aggregate. In contrast, an ectodermal epithelial cell remained in contact with an endodermal aggregate and never exhibited migratory behavior. Cytochalasin treatment of only endodermal epithelial cells abolished the migration. (3) One to 4 endodermal epithelial cells and/or ectodermal epithelial cells were placed in contact with one another forming up to 4-cell aggregates. Endodermal epithelial cells exhibited high motility that can be attributed to the migratory movement described above. Finally, formation of actin bundles, as visualized with rhodamine-phalloidin, was always correlated with pseudopod formation in endodermal epithelial cells during early and mid stages of aggregate formation.  相似文献   

16.
The functions of hepatocytes under the collagen-contained cell aggregate (cell pack) conditions were studied using liver-specific protein synthesis. Freshly isolated murine hepatocytes were suspended in the medium containing collagen and centrifuged, and the resultant cell masses were cultured on the porous membranes floating on the medium. In these cultures cells were attached to each other three-dimensionally with collagen present in the intercellular spaces. Cultured hepatocytes in the cell pack maintained high and stable activity in the expression of their functions for more than 2 weeks, even when cultured with the medium lacking any hormones and serum, whereas hepatocytes in monolayer cultures lost their functions within a week.Similarly, when the cell packs of rat hepatocytes were transplanted into rat spleens, they could retain viability in the form of cell aggregate with the expression of liver-specific albumin mRNA at a higher level than in the transplantated cell suspensions.The lifespan and the initial expression level of hepatocellular functions inculture were similar to that of the cell pack in cell aggregates without collagen and in cellular monolayers on the collagen gel respectively.It was concluded that the condition where cells are in contact witheach other has an important role in the expression of hepatocellular functions and collagen present in the intercellular spaces enhances the functional levels.  相似文献   

17.
Metabolic shift analysis at high cell densities   总被引:2,自引:0,他引:2  
Abstract: In high cell density cultures it is virtually inevitable that the environment to which the cells are exposed is heterogeneous. Thus, with suspended cultures, individual cells are subject to temporal changes in their environment whereas with aggregated or immobilized cells, the culture can be considered as being formed by a number of subpopulations, each with its own environmental characteristics. In addition, in a high cell density environment, high concentrations of end products may negatively influence the growth rate. This may result in the selection of organisms with an altered metabolic behaviour or with a decreased sensitivity to the adverse effects of the product. We discuss the consequences of this heterogeneity with regard to carbon source metabolism in view of the ability of many bacterial species to adapt to environmental conditions. Selection of variant organisms was found to occur with Clostridium butyricum when grown for a prolonged time in a medium containing approx. I-50 mM glucose. In contrast to the original strain, these variants could sustain a high maximal growth rate in the presence of butyric acid. In addition, they had acquired the capacity to spontaneously form aggregates and were able to carry out a completely solventogenic fermentation. Heterogeneous metabolic activity in aggregated cells is demonstrated with cultures of Lactobacillus laevolacticus , an aggregateforming lactic acid bacterium that converts glucose completely to o-lactate. By using microelectrodes, we show that the fraction of metabolically active cells decreases with increasing aggregate size: in larger aggregates steep pH gradients occur with the effect that only the outer layer of the aggregate is metabolically active, i.e. contributes to lactic acid formation, whereas with smaller aggregates all cells remain active. As a result, the net specific lactic acid production rate of the population as a whole is not invariably increased with increased aggregate size.  相似文献   

18.
The effect of CO2 availability on cell size, shape, and aggregation in continuous cultures of Candida utilis was studied in minimal medium with glucose or ethanol as the sole carbon and energy source. Enrichment with CO2 was achieved (i) by using the substrate with more C atoms, (ii) by using pure oxygen and thus decreasing aeration intensity at the same dissolved-oxygen concentration, or (iii) by adding CO2 to the aeration gas. The cells were always of yeast shape, and no filaments were formed. In cultures with a biomass concentration above 6 g (dry weight) per liter, no cell aggregates were observed. In cultures with a lower biomass, the daughter cells failed to separate from the parent cells and formed aggregates with thickened walls. The average cell number per aggregate was found to be higher, and the average protoplast volume lower, under conditions of probable CO2 limitation. Simultaneously, the ratio of total dry weight to wet weight of protoplasts was considerably higher, indicating an increased share of wall or extracellular material. The possible effect of the observed morphological changes for maintaining a suitable concentration gradient of CO2 around the cell is discussed.  相似文献   

19.
Passaging protocols for mammalian neural stem cells in suspension bioreactors   总被引:10,自引:0,他引:10  
Mammalian neural stem cells (NSC) offer great promise as therapeutic agents for the treatment of central nervous system disorders. As a consequence of the large numbers of cells that will be needed for drug testing and transplantation studies, it is necessary to develop protocols for the large-scale expansion of mammalian NSC. Neural stem cells and early progenitor cells can be expanded in vitro as aggregates in controlled bioreactors using carefully designed media. The first objective of this study was to determine if it is possible to maintain a population of murine neural stem and progenitor cells as aggregates in suspension culture bioreactors over extended periods of time. We discovered that serial passaging of a mixture of aggregates sizes resulted in high viabilities, high viable cell densities, and good control of aggregate diameter. When the NSC aggregates were serially subcultured three times without mechanical dissociation, a total multiplication ratio of 2.9 x 10(3) was achieved over a period of 12 days, whereas the aggregate size was controlled (mean diameter less than 150 microm) below levels at which necrosis would occur. Moreover, cell densities of 1.0 x 10(6) cells/mL were repeatedly achieved in batch culture with viabilities exceeding 80%. The second objective was to examine the proliferative potential of single cells shed from the surface of these aggregates. We found that the single cells, when subcultured, retained the capacity to generate new aggregates, gave rise to cultures with high viable cell densities and were able to differentiate into all of the primary cell phenotypes in the central nervous system.  相似文献   

20.
The effect of CO2 availability on cell size, shape, and aggregation in continuous cultures of Candida utilis was studied in minimal medium with glucose or ethanol as the sole carbon and energy source. Enrichment with CO2 was achieved (i) by using the substrate with more C atoms, (ii) by using pure oxygen and thus decreasing aeration intensity at the same dissolved-oxygen concentration, or (iii) by adding CO2 to the aeration gas. The cells were always of yeast shape, and no filaments were formed. In cultures with a biomass concentration above 6 g (dry weight) per liter, no cell aggregates were observed. In cultures with a lower biomass, the daughter cells failed to separate from the parent cells and formed aggregates with thickened walls. The average cell number per aggregate was found to be higher, and the average protoplast volume lower, under conditions of probable CO2 limitation. Simultaneously, the ratio of total dry weight to wet weight of protoplasts was considerably higher, indicating an increased share of wall or extracellular material. The possible effect of the observed morphological changes for maintaining a suitable concentration gradient of CO2 around the cell is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号