首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric black tea polyphenols (PBPs) have been shown to possess anti-tumor-promoting effects in two-stage skin carcinogenesis. However, their mechanisms of action are not fully elucidated. In this study, mechanisms of PBP-mediated antipromoting effects were investigated in a mouse model employing the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Compared to controls, a single topical application of TPA to mouse skin increased the translocation of protein kinase C (PKC) from cytosol to membrane. Pretreatment with PBPs 1-3 decreased TPA-induced translocation of PKC isozymes (α, β, η, γ, ε) from cytosol to membrane, whereas PBPs 4 and 5 were less effective. The levels of PKCs δ and ζ in cytosol/membrane were similar in all the treatment groups. Complementary confocal microscopic evaluation showed a decrease in TPA-induced PKCα fluorescence in PBP-3-pretreated membranes, whereas pretreatment with PBP-5 did not show a similar decrease. Based on the experiments with specific enzyme inhibitors and phosphospecific antibodies, both PBP-3 and PBP-5 were observed to decrease TPA-induced level and/or activity of phosphatidylinositol 3-kinase (PI3K) and AKT1 (pS473). An additional ability of PBP-3 to inhibit site-specific phosphorylation of PKCα at all three positions responsible for its activation [PKCα (pT497), PKC PAN (βII pS660), PKCα/βII (pT638/641)] and AKT1 at the Thr308 position, along with a decrease in TPA-induced PDK1 protein level, correlated with the inhibition of translocation of PKC, which may impart relatively stronger chemoprotective activity to PBP-3 than to PBP-5. Altogether, PBP-mediated decrease in TPA-induced PKC phosphorylation correlated well with decreased TPA-induced NF-κB phosphorylation and downstream target proteins associated with proliferation, apoptosis, and inflammation in mouse skin. Results suggest that the antipromoting effects of PBPs are due to modulation of TPA-induced PI3K-mediated signal transduction.  相似文献   

2.
The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS104 via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21WAF1 gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.  相似文献   

3.
4.
5.
The aim of the present study was to investigate the involvement of PKC in Bcl-2 protection against serum withdrawal-induced apoptosis in PC-12 cells. Human Bcl-2 was overexpressed in PC-12 cells and was found to totally inhibit serum withdrawal-induced apoptosis. 12-O-tetradecanoylphorbol-13-acetate (TPA) could induce cell death in PC-12 cells that overexpressed Bcl-2, implicating protein kinase C (PKC) in Bcl-2 protection. However, TPA-induced cell death did not involve caspase-3 activation or DNA degradation, suggesting that Bcl-2 was still inhibiting these processes and that TPA was mediating cell death either downstream of Bcl-2 or via independent signalling pathways. High cytosolic and particulate protein levels of PKC delta were correlated with TPA-induced cell death suggesting that PKC delta positively regulated this cell death. However, substantial down-regulation of PKC by prolonged exposure to TPA did not reduce the frequency of TPA-induced cell death, raising the possibility that PKC delta did not regulate cell death alone. Surprisingly, TPA-induced cell death was dependent on the time at which cells were treated, suggesting that cells were changing with time. Supporting this idea, the cytosolic and particulate protein levels of PKC delta and were found to change with time, and may account for the time-dependent manner in which TPA induced cell death. This is the first report to show that sensitivity to drug induced cell death in a cultured cell line changes with time. Experimental and theoretical evidence suggests that many cellular constituents exhibit temporal variations, oscillations or rhythms due to feedback regulation. We believe that investigation of these temporal changes, how they alter cell function with time and how they might be manipulated in single cells as well as across cellular populations is paramount in furthering our understanding of cellular behaviour.  相似文献   

6.
Treatment of the human promyelocytic leukemia cell line HL-60, with 12-o-tetradecanoylphorbol acetate (TPA) results in the differentiation into macrophage-like cell. A potent inhibitor of protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine(H-7), suppressed the proliferation of HL-60 cells and also inhibited TPA-induced cell differentiation of these cells. N-(2-guanidinoethyl)-5-isoquinolinesulfonamide(HA-1004), a weaker analog of H-7, failed to inhibit this TPA-induced cell differentiation. H-7 also inhibited TPA-induced protein phosphorylation in these cells. Thus, protein kinase C-mediated phosphorylation may be involved in the process of TPA-induced HL-60 cell differentiation.  相似文献   

7.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to induce growth arrest and differentiation of various cancer cells. In the current study, we investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the expression of PPARgamma and proliferation of A549 cells. TPA elicited a dose- and time-dependent increase in PPARgamma mRNA and protein levels. PPARgamma expression in response to TPA was attenuated by pretreatment with bisindolylmaleimide I, N-acetyl-L-cysteine (NAC) and PD98059. TPA-induced protein kinase C (PKC) activation was linked to the generation of reactive oxygen species (ROS), both of which were indispensable for PPARgamma expression in A549 cells. Pretreatment with bisindolylmaleimide I or NAC blocked TPA-induced phosphorylation of extracellular signal-regulated kinase (ERK), suggesting that ERK-mediated signaling is also involved in the induction of PPARgamma. Furthermore, the growth inhibitory effect of troglitazone was significantly potentiated by prolonged incubation with TPA and was attenuated in the presence of GW9662, a specific inhibitor of PPARgamma. These effects were associated with an induction of cell cycle arrest at G0/G1 phase, which was accompanied by the induction of p21Waf1/Cip1 expression and decreased cyclin D1 expression. Taken together, these observations indicate that TPA synergizes with PPARgamma ligand to inhibit cell growth through up-regulation of PPARgamma expression.  相似文献   

8.
9.
Investigation of 12-tetradecanoyl phorbol 13-acetate (TPA)-resistant U937 cell clones has demonstrated that the normal sustained p42 mitogen-activated protein kinase (p42MAPK) activation produced by TPA treatment is absent. This is shown to be due to the inability of TPA to maintain activation of MAP/extracellular signal-regulated kinase kinase (MEK) and cRaf1. A direct relationship between sustained p42MAPK activation and differentiation is provided by the demonstration that blockade of MEK activation by PD098059 prevents TPA-induced morphological differentiation of wild type U937 cells. Using TPA-resistant clones, an involvement of microtubule reorganization and granule release is demonstrated by the ability of the microtubule depolymerizing agent nocodazole, to promote sustained p42MAPK activation in the presence of TPA. This response correlates with the lack of TPA-induced microtubule reorganization in these clones and the ability of nocodazole to partially bypass resistance to TPA. The results demonstrate a causal link between protein kinase C-dependent microtubule reorganization, sustained p42MAPK activation, and the induction of differentiation in U937 cells.  相似文献   

10.
Application of 12-0-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to the induction of ornithine decarboxylase (EC 4.1.1.17) and the accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was determined using α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. α-Difluoromethylornithine applied to the skin of mice or administered in drinking water in conjunction with applications of TPA to 7,12-dimethylbenz[a]anthracene-initiated mouse skin inhibited the formation of mouse skin papillomas by 50 and 90% respectively; TPA-induced ornithine decarboxylase activity and the accumulation of putrescine were almost completely inhibited.  相似文献   

11.
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta.  相似文献   

12.
Objectives:  Heparin acts as an extracellular stimulus capable of activating major cell signalling pathways. Thus, we examined the putative mechanisms utilized by heparin to stimulate HT29, SW1116 and HCT116 colon cancer cell growth.
Materials and methods:  Possible participation of the mitogen-activated protein kinase (MAPK) cascade on heparin-induced HT29, SW1116 and HCT116 colon cancer cell growth was evaluated using specific MAPK cascade inhibitors, Western blot analysis, real-time quantitative PCR and FACS apoptosis analysis.
Results:  Treatment with a highly specific p38 kinase inhibitor, SB203580, significantly (50–70%) inhibited heparin-induced colon cancer cell growth, demonstrating that p38 MAPK signalling is involved in their heparin-induced proliferative response. This was shown to be correlated with increased (up to 3-fold) phosphorylation of 181/182 threonine/tyrosine residues on p38 MAP kinase. Furthermore, heparin inhibited cyclin-dependent kinase inhibitor p21 WAF1 / CIP1 and p53 tumour suppressor gene and protein expression up to 2-fold or 1.8-fold, respectively, and stimulated cyclin D1 expression up to 1.8-fold, in these cell lines through a p38-mediated mechanism. On the other hand, treatment with heparin did not appear to affect HT29, SW1116 and HCT116 cell levels of apoptosis.
Conclusions:  This study demonstrates that an extracellular glycosaminoglycan, heparin, finely modulates expression of genes crucial to cell cycle regulation through specific activation of p38 MAP kinase to stimulate colon cancer cell growth.  相似文献   

13.
14.
12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester that is known as a tumor promoter, induces differentiation of myeloid cells and suppresses their proliferation. We studied the regulation of apoptosis by TPA in human monocytic cell line U937 cells that lack p53. Untreated U937 cells constitutively underwent apoptosis, and TPA enhanced apoptosis in these cells. Further studies showed that TPA increased production of tumor necrosis factor-alpha (TNFalpha) in U937 cells, and exogenously added TNFalpha induced apoptosis. Moreover, the induction of apoptosis by TPA was blocked by anti-TNFalpha antibody. Similar results were obtained in the myeloblastic cell line KY821 cells. We also found that the induction of apoptosis by TPA was increased in cells overexpressed with TNF receptor 1 but not in control cells. Furthermore, TPA failed to induce the production of TNFalpha and apoptosis in cells with either their protein kinase C or mitogen-activated protein kinase pathway blocked. Our results indicate that TPA induces apoptosis, at least in part, through a pathway that requires endogenous production of TNFalpha in U937 cells. Our data also suggest that the induction of apoptosis by TPA occurs through activation of protein kinase C and mitogen-activated protein kinase and TNFalpha is an autocrine-stimulating factor for the induction of apoptosis in these cells.  相似文献   

15.
Recent work has shown that peroxisome proliferator-activated receptor beta (PPARbeta) attenuates cell proliferation and skin carcinogenesis, and this is due in part to regulation of ubiquitin C expression. In these studies, the role of PPARbeta in modulating ubiquitin-dependent protein kinase Calpha (PKCalpha) levels and phosphorylation signaling pathways was evaluated. Intracellular phosphorylation analysis showed that phosphorylated PKCalpha and other kinases were lower in wild-type mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) as compared with PPARbeta-null mouse skin. No differences in expression levels of other PKC isoforms present in skin were observed. Lower ubiquitination of PKCalpha was found in TPA-treated PPARbeta-null skin as compared with wild-type, and inhibition of ubiquitin-dependent proteasome degradation prevented TPA-induced down-regulation of PKCalpha. The activity of PKCalpha and downstream signaling kinases is enhanced, and expression of cyclooxygenase-2 (COX-2) is significantly greater, in PPARbeta-null mouse skin in response to TPA compared with wild-type mouse skin. Inhibition of PKCalpha or COX-2 reduced cell proliferation in TPA-treated PPARbeta-null keratinocytes in a dose-dependent manner, whereas it only slightly influenced cell proliferation in wild-type keratinocytes. Combined, these studies provide strong evidence that PPARbeta attenuates cell proliferation by modulating PKCalpha/Raf1/MEK/ERK activity that may be due in part to reduced ubiquitin-dependent turnover of PKCalpha.  相似文献   

16.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.  相似文献   

17.
18.
Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and all-trans-retinoic acid (trans-RA) are potent regulators of growth of cancer cells. In this study, we investigated the effect of TPA and trans-RA alone or their combination on proliferation of human breast cancer ZR75-1 and T47D and lung cancer H460 and H292 cell lines. trans-RA caused various degrees of growth inhibition of these cell lines. However, TPA showed inhibition of proliferation of H460 and H292 cells and induction of ZR75-1 cell growth. Although trans-RA did not significantly regulate the growth inhibitory effect of TPA, it completely prevented its growth stimulating function. The divergent effects of TPA were associated with specific disruption of cell cycle events, an induction of G(0)/G(1) arrest in H460 and H292 cells and inhibition of G(0)/G(1) arrest with increase of S phase in ZR75-1 cells. Induction of G(0)/G(1) arrest was accompanied by induction of p21(WAF1) and ERK activity, whereas inhibition of G(0)/G(1) arrest was associated with enhanced activity of JNK and AP-1 but not ERK. trans-RA did not affect TPA-induced p21(WAF1) expression. However, it inhibited TPA-induced AP-1 activity in ZR75-1 cells and the constitutive AP-1 activity in H460 and H292 cells. Thus, trans-RA modulates TPA activity through its interaction through TPA-induced JNK/AP-1 pathway but not TPA-induced ERK/p21(WAF1) pathway.  相似文献   

19.
Human alpha or beta interferons inhibit the proliferation of Daudi Burkitt lymphoma cells and induce the differentiation of these cells towards a mature plasma cell phenotype. Similar responses are seen when Daudi cells are treated with the phorbol ester, TPA. Both interferons and TPA down-regulate expression of the c-myc oncogene in these cells. Although TPA can mimic the effect of interferon on cell differentiation, it does not induce 2'5' oligoadenylate synthetase or the interferon-sensitive mRNAs, 6-16 or 9-27. Thus chronic stimulation of protein kinase C by TPA cannot mimic all of the effects of interferon treatment on gene expression. Inhibition of ADP-ribosyl transferase activity by 3-methoxybenzamide impairs interferon- or TPA-induced differentiation of Daudi cells. This agent induces a higher level of c-myc mRNA in the cells and stimulates the incorporation of [3H]thymidine into DNA; although these effects are partially counteracted by interferon or TPA treatment, the elevated expression of the c-myc gene may be sufficient to prevent terminal differentiation and allow cell proliferation to continue.  相似文献   

20.
Ornithine decarboxylase is the rate-limiting enzyme in the biosynthesis of polyamines, which are believed to play an essential role in diverse biological processes including cell proliferation and differentiation. We have previously reported [J. Bomser, K. Singletary, M. Wallig, M. Smith, Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds, Cancer Letters 135 (1999) 151-157] that pre-application of a grape polyphenolic fraction (GPF) to mouse skin epidermis inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity, as well as 7, 12-dimethylbenz[a]anthracene (DMBA)-initiated, TPA-promoted mouse skin tumorigenesis. The present studies were designed to further characterize the effect of time and dose of application of GPF on TPA-induced ODC activity and protein expression, and on protein kinase C activity in mouse skin epidermis. In addition, the effect of GPF on ODC kinetics in vitro was examined. Application of 5, 10, and 20 mg of GPF 20 min prior to treatment with TPA resulted in a significant decrease in epidermal ODC activity of 54, 53, 90%, respectively, compared with controls. Yet, ODC protein levels (Western blot) in the 10 and 20 mg GPF groups were significantly increased by 1.8 and 1.9-fold, respectively, compared with controls. A similar response was observed with the ODC inhibitor 2-difluoromethylornithine (DFMO), which served as a positive control. Application of grape polyphenolics (20 mg) at 60 and 30 min prior to treatment with TPA inhibited ODC activity by 62 and 68%, respectively, compared with controls (P<0.05). In contrast, application of grape polyphenolics (20 mg) at 60, 120 and 240 min after treatment with TPA resulted in no significant changes in ODC activity. A similar increase in epidermal ODC protein was observed in these GPF-treated animals, similar to that observed when GPF application preceded TPA. When applied to mouse skin prior to TPA, GPF was associated with a decrease in subsequent PKC activity compared with controls at 10 and 30 min following TPA treatment. The GPF-associated decrease in PKC activity preceded the decrease in ODC activity. In a separate in vitro study, kinetic analyses indicated that GPF is a competitive inhibitor of ODC activity. Collectively these data suggest that the grape polyphenolic fraction is effective as an inhibitor of ODC activity when applied before TPA, and that the magnitude of inhibition is independent of epidermal ODC protein content. In addition, GPF is a competitive inhibitor of ODC activity in vitro. The decrease in TPA-induced ODC activity due to GPF treatment is preceded by an inhibition of TPA-induced PKC activity. Thus, the polyphenolic fraction from grapes warrants further examination as a skin cancer chemopreventive agent that interferes with cellular events associated with TPA promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号