首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The recently determined structure of plant photosystem I (PSI) provides the first relatively high-resolution structural model of a supercomplex containing a reaction center and its peripheral antenna. Large amounts of highly purified PSI were required to get enough crystals amenable for structural determination by X-ray crystallography. In addition, a deep biochemical understanding of the large supercomplex was vital for achieving the goal. The stability of PSI was analyzed by sucrose gradient centrifugation and gel electrophoresis. Small amounts of LHCI were detached from PSI following a 12 day incubation under crystallization conditions. The interaction between the reaction center and the peripheral antenna of PSI (LHCI) as well as the interactions among the LHCI monomers are flexible. Nevertheless, the pure and homogeneous preparation of PSI allows for relatively tight crystal packing, which holds promise for obtaining atomic resolution in the future.  相似文献   

2.
Currently, there are very little data available regarding the photosynthetic apparatus of red algae. We have analyzed the genes for Photosystem I in the recently sequenced genome of the red alga Galdieria sulphuraria. All subunits that are conserved between plants and cyanobacteria were unambiguously identified in the Galdieria genome: PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaI, PsaJ, PsaK and PsaL. From the plant specific subunits, PsaN and PsaO were identified but the sequence homology was much lower than for the subunits that are present in plants and cyanobacteria. The subunit PsaX, which is specific for thermophilic cyanobacteria, is not present in the Galdieria genome, whereas PsaM is a plastid-encoded protein as in other red algae. The sequences of the core subunits of PSI were further analyzed by mapping of the conserved areas in the crystal structures of cyanobacterial and plant PSI. The structural comparison shows that PSI from the red alga Galdieria may represent a common ancestral structure at the interface between cyanobacterial and plant PSI. Some subunits have a “zwitter” structure that contains structural elements that show similarities with either plant or cyanobacterial PSI. The structure of PsaL, which is responsible for the trimerization of PSI in cyanobacteria, lacks a short helix and the Ca2+ binding site, which are essential for trimer formation indicating that the Galdieria PSI is a monomer. However the sequence homology to plant PsaL is low and lacks strong conservation of the interaction sites with PsaH. Furthermore, the sites for interaction of plant PSI with the LHCI complex are not well conserved between plants and Galdieria, which may indicate that Galdieria may contain a PSI that is evolutionarily much more ancient than PSI from green algae, plants and the current cyanobacteria.  相似文献   

3.
We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.  相似文献   

4.
Despite its enormous complexity, a plant Photosystem I (PSI) is arguably the most efficient nano-photochemical machine in Nature. It emerged as a homodimeric structure containing several chlorophyll molecules over 3.5 billion years ago, and has perfected its photoelectric properties ever since. The recently determined structure of plant PSI, which is at the top of the evolutionary tree of this kind of complexes, provided the first relatively high-resolution structural model of the supercomplex containing a reaction center (RC) and a peripheral antenna (LHCI) complexes. The RC is highly homologous to that of the cyanobacterial PSI and maintains the position of most transmembrane helices and chlorophylls during 1.5 years of separate evolution. The LHCI is composed of four nuclear gene products (Lhca1-Lhca4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and their assembly into dimers. In this respect, we describe structural elements, which establish the biological significance of a plant PSI and discuss structural variance from the cyanobacterial version. The present comprehensive structural analysis summarizes our current state of knowledge, providing the first glimpse at the architecture of this highly efficient photochemical machine at the atomic level.  相似文献   

5.
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.  相似文献   

6.
Ben-Shem A  Frolow F  Nelson N 《FEBS letters》2004,564(3):274-280
The evolution of photosystem (PS) I was probably initiated by the formation of a homodimeric reaction center similar to the one currently present in green bacteria. Gene duplication has generated a heterodimeric reaction center that subsequently evolved to the PSI present in cyanobacteria, algae and plant chloroplasts. During the evolution of PSI several attempts to maximize the efficiency of light harvesting took place in the various organisms. In the Chlorobiaceae, chlorosomes and FMO were added to the homodimeric reaction center. In cyanobacteria phycobilisomes and CP43' evolved to cope with the light limitations and stress conditions. The plant PSI utilizes a modular arrangement of membrane light-harvesting proteins (LHCI). We obtained structural information from the two ends of the evolutionary spectrum. Novel features in the structure of Chlorobium tepidum FMO are reported in this communication. Our structure of plant PSI reveals that the addition of subunit G provided the template for LHCI binding, and the addition of subunit H prevented the possibility of trimer formation and provided a binding site for LHCII and the onset of energy spillover from PSII to PSI.  相似文献   

7.
Photosystem I (PSI)–light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI–LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI–LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI–LHCI is empty in the red algal PSI–LHCI. The PSI–LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI–LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI–LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI–LHCI complex.  相似文献   

8.
Structure refinement of the OpcA adhesin using molecular dynamics   总被引:1,自引:0,他引:1  
OpcA from Neisseria meningitidis, the causative agent of meningococcal meningitis and septicemia, is an integral outer membrane protein that facilitates meningococcal adhesion through binding the proteoglycan receptors of susceptible cells. Two structures of OpcA have been determined by x-ray diffraction to 2 A resolution, revealing dramatically different conformations in the extracellular loops--the protein domain implicated in proteoglycan binding. In the first structure, a positively charged crevice formed by loops 1 and 2 was identified as the site for binding proteoglycans, whereas in the second structure the crevice was not evident as loops 1 and 2 adopted different conformations. To reconcile these results, molecular-dynamics simulations were carried out on both structures embedded in a solvated lipid bilayer membrane. Free of crystal contacts and crystallization agents, the loops were observed to undergo large structural transformations, suggesting that the conformation of the loops in either x-ray structure is affected by crystallization. Subsequent simulations of both structures in their crystal lattices confirmed this conclusion. Based on our molecular-dynamics trajectories, we propose a model for OpcA that combines stable structural features of the available x-ray structures. In this model, all five extracellular loops of OpcA have stable secondary structures. The loops form a funnel that leads to the base of the beta-barrel and that includes Tyr-169 on its exposed surface, which has been implicated in proteoglycan binding.  相似文献   

9.
《Biophysical journal》2020,118(9):2209-2219
An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.  相似文献   

10.
We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion for complex selection was the distance between the copper ion of Pc and the P700 chlorophyll special pair. Additionally, the unique tyrosine residue (Tyr(12)) of the hydrophobic docking surface of Prochlorothrix hollandica Pc yields a specific interaction with the lumenal surface of PSI, thus providing the second constraint for the complex. The structure that corresponded best to our criteria was obtained by the GRAMM algorithm. In this structure, the solvent-exposed histidine that coordinates copper in Pc is at the van der Waals distance from the pair of stacked tryptophans that separate the chlorophylls from the solvent, yielding the shortest possible metal-to-metal distance. The unique tyrosine on the surface of the Prochlorothrix Pc hydrophobic patch also participates in a hydrogen bond with the conserved Asn(633) of the PSI PsaB polypeptide (numbering from the Synechococcus elongatus crystal structure). Free energy calculations for complex formation with wild-type Pc, as well as the hydrophobic patch Tyr(12)Gly and Pro(14)Leu Pc mutants, were carried out using a molecular mechanics Poisson-Boltzman, surface area approach (MM/PBSA). The results are in reasonable agreement with our experimental studies, suggesting that the obtained structure can serve as an adequate model for P. hollandica Pc-PSI complex that can be extended for the study of other cyanobacterial Pc/PSI reaction pairs.  相似文献   

11.
Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI–NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo‐atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low‐abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI–NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.  相似文献   

12.
Photosystem I-light harvesting complex I (PSI-LHCI) was isolated from the thermoacidophilic red alga Galdieria sulphuraria, and its structure, composition, and light-harvesting function were characterized by electron microscopy, mass spectrometry, and ultrafast optical spectroscopy. The results show that Galdieria PSI is a monomer with core features similar to those of PSI from green algae, but with significant differences in shape and size. A comparison with the crystal structure of higher plant (pea) PSI-LHCI indicates that Galdieria PSI binds seven to nine light-harvesting proteins. Results from ultrafast optical spectroscopy show that the functional coupling of the LHCI proteins to the PSI core is tighter than in other eukaryotic PSI-LHCI systems reported thus far. This tight coupling helps Galdieria perform efficient light harvesting under the low-light conditions present in its natural endolithic habitat.  相似文献   

13.
With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of approximately 49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering.  相似文献   

14.
Integrins are modular (alphabeta) heterodimeric proteins that mediate cell adhesion and convey signals across the plasma membrane. Interdomain motions play a key role in signal transduction by propagating structural changes through the molecule, thus controlling the activation state and adhesive properties of the integrin. We expressed a soluble fragment of the human integrin beta2 subunit comprising the plexin-semaphorin-integrin domain (PSI)/hybrid domain/I-EGF1 fragment and present its crystal structure at 1.8-A resolution. The structure reveals an elongated molecule with a rigid architecture stabilized by nine disulfide bridges. The PSI domain is located centrally and participates in the formation of extended interfaces with the hybrid domain and I-EGF1 domains, respectively. The hybrid domain/PSI interface involves the burial of an Arg residue, and contacts between PSI and I-EGF1 are mainly mediated by well conserved Arg and Trp residues. Conservation of key interacting residues across the various integrin beta subunits sequences suggests that our structure represents a good model for the entire integrin family. Superposition with the integrin beta3 receptor in its bent conformation suggests that an articulation point is present at the linkage between its I-EGF1 and I-EGF2 modules and underlines the importance of this region for the control of integrin-mediated cell adhesion.  相似文献   

15.
The x-ray crystal structure of Synechocystis hemoglobin has been solved to a resolution of 1.8 A. The conformation of this structure is surprisingly different from that of the previously reported solution structure, probably due in part to a covalent linkage between the heme 2-vinyl and His117 that is present in the crystal structure but not in the structure solved by NMR. Synechocystis hemoglobin is a hexacoordinate hemoglobin in which the heme iron is coordinated by both the proximal and distal histidines. It is also a member of the "truncated hemoglobin" family that is much shorter in primary structure than vertebrate and plant hemoglobins. In contrast to other truncated hemoglobins, the crystal structure of Synechocystis hemoglobin displays no "ligand tunnel" and shows that several important amino acid side chains extrude into the solvent instead of residing inside the heme pocket. The stereochemistry of hexacoordination is compared with other hexacoordinate hemoglobins and cytochromes in an effort to illuminate factors contributing to ligand affinity in hexacoordinate hemoglobins.  相似文献   

16.
Morphology and crystal structure of a recombinant silk-like molecule, SLP4, were studied. Wide angle x-ray scattering (WAXS) and electron diffraction revealed that SLP4 lyophilized powder and thin films were isomorphic with the silk I crystal structure. Transmission electron microscopy of SLP4 thin films demonstrated a morphology of flat, variable width, crystallites that may aggregate in an epitaxial manner. Theoretical diffraction patterns from silk I crystal structure models were critically compared with SLP4 WAXS data. The analysis concluded that while the crankshaft model is capable of describing details of the SLP4 structural data well, the out-of-register model does not explain the experimental results. In particular, the predicted intensities of the crystallographic reflections for the out-of-register model are inconsistent with the SLP4 WAXS data. © 1998 John Wiley & Sons, Inc. Biopoly 45: 307–321, 1998  相似文献   

17.
5-HT(3) receptors demonstrate significant structural and functional homology to other members of the Cys-loop ligand-gated ion channel superfamily. The extracellular domains of these receptors share similar sequence homology (approximately 20%) with Limnaea acetylcholine binding protein, for which an x-ray crystal structure is available. We used this structure as a template for computer-based homology modeling of the 5-HT(3) receptor extracellular domain. AutoDock software was used to dock 5-HT into the putative 5-HT(3) receptor ligand-binding site, resulting in seven alternative energetically favorable models. Residues located no more than 5 A from the docked 5-HT were identified for each model; of these, 12 were found to be common to all seven models with five others present in only certain models. Some docking models reflected the cation-pi interaction previously demonstrated for W183, and data from these and other studies were used to define our preferred models.  相似文献   

18.
The three-dimensional structures of leucine-rich repeat (LRR)-containing proteins from five different families were previously predicted based on the crystal structure of the ribonuclease inhibitor, using an approach that combined homology-based modeling, structure-based sequence alignment of LRRs, and several rational assumptions. The structural models have been produced based on very limited sequence similarity, which, in general, cannot yield trustworthy predictions. Recently, the protein structures from three of these five families have been determined. In this report we estimate the quality of the modeling approach by comparing the models with the experimentally determined structures. The comparison suggests that the general architecture, curvature, "interior/exterior" orientations of side chains, and backbone conformation of the LRR structures can be predicted correctly. On the other hand, the analysis revealed that, in some cases, it is difficult to predict correctly the twist of the overall super-helical structure. Taking into consideration the conclusions from these comparisons, we identified a new family of bacterial LRR proteins and present its structural model. The reliability of the LRR protein modeling suggests that it would be informative to apply similar modeling approaches to other classes of solenoid proteins.  相似文献   

19.
The ability of photosynthetic organisms to use the sun's light as a sole source of energy sustains life on our planet. Photosystems I (PSI) and II (PSII) are large, multi-subunit, pigment–protein complexes that enable photosynthesis, but this intriguing process remains to be explained fully. Currently, crystal structures of these complexes are available for thermophilic prokaryotic cyanobacteria. The mega-Dalton trimeric PSI complex from thermophilic cyanobacterium, Thermosynechococcus elongatus, was solved at 2.5?Å resolution with X-ray crystallography. That structure revealed the positions of 12 protein subunits (PsaA-F, PsaI-M, and PsaX) and 127 cofactors.Although mesophilic organisms perform most of the world's photosynthesis, no well-resolved trimeric structure of a mesophilic organism exists. Our research model for a mesophilic cyanobacterium was Synechocystis sp. PCC6803. This study aimed to obtain well-resolved crystal structures of [1] a monomeric PSI with all subunits, [2] a trimeric PSI with a reduced number of subunits, and [3] the full, trimeric wild-type PSI complex. We only partially succeeded with the first two structures, but we successfully produced the trimeric PSI structure at 2.5?Å resolution. This structure was comparable to that of the thermophilic species, but we provided more detail. The PSI trimeric supercomplex consisted of 33 protein subunits, 72 carotenoids, 285 chlorophyll a molecules, 51 lipids, 9 iron-sulfur clusters, 6 plastoquinones, 6 putative calcium ions, and over 870 water molecules.This study showed that the structure of the PSI in Synechocystis sp. PCC6803 differed from previously described PSI structures. These findings have broadened our understanding of PSI structure.  相似文献   

20.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Rhodospirillum rubrum has been crystallized in a form that is suitable for structural studies by x-ray diffraction. The asymmetric unit of the crystal contains one dimeric enzyme molecule of molecular mass 101,000 Da. The enzyme was activated prior to crystallization and is presumed to be in the CO2-activated state in the crystal. The method of hydrophobicity correlation has been used to compare the amino acid sequence of this molecule (466 residues) to that of the large subunit of a higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (477 residues in Nicotiana tabacum). The pattern of residue hydrophobicities is similar along the two polypeptides. This suggests that the three-dimensional folding of the large polypeptide chains may be similar in plant and bacterial enzymes. If this is so, knowing the structure of either the plant or bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase should aid in learning the structure of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号