首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Biotransformation of nitriles by rhodococci   总被引:6,自引:0,他引:6  
Rhodococci have been shown to be capable of a very wide range of biotransformations. Of these, the conversion of nitriles into amides or carboxylic acids has been studied in great detail because of the biotechnological potential of such activities. Initial investigations used relatively simple aliphatic nitriles. These studies were quickly followed by the examination of the regio- and stereoselective properties of the enzymes involved, which has revealed the potential synthetic utility of rhodococcal nitrile biotransforming enzymes. Physiological studies on rhodococci have shown the importance of growth medium design and bioreactor operation for the maximal conversion of nitriles. This in turn has resulted in some truly remarkable biotransformation activities being obtained, which have been successfully exploited for commercial organic syntheses (e.g. acrylamide production from acrylonitrile).The two main types of enzyme involved in nitrile biotransformations by rhodococci are nitrile hydratases (amide synthesis) and nitrilases (carboxylic acid synthesis with no amide intermediate released). It is becoming clear that many rhodococci contain both activities and multiple forms of each enzyme, often induced in a complex way by nitrogen containing molecules. The genes for many nitrile-hydrolysing enzymes have been identified and sequenced. The crystal structure of one nitrile hydratase is now available and has revealed many interesting aspects of the enzyme structure in relationship to its catalytic activity and substrate selectivity.  相似文献   

2.
Acrylamide was produced from acrylonitrile using immobilized Brevibacterium CH1 cells that were isolated from soil and found to possess nitrile hydratase activity. The reaction conditions and stability of the enzyme activity were studied. The conversion yield was nearly 100%, including a trace amount of acrylic acid. This strain showed strong activity of nitrile hydratase toward acrylonitrile and extremely low activity of amidase toward acrylamide. A packed bed reactor was operated in a fed-batch manner for acrylamide production of high concentration. The acrylonitrile concentration was maintained below 3% and the operating temperature at 4 degrees C to minimize enzyme deactivation.  相似文献   

3.
To produce acrylamide from acrylonitrile by use of a new enzyme, nitrile hydratase, a number of nitrile-utilizing microorganisms were screened for the enzyme activity by an intact cell system. An isobutyronitrile-utilizing bacterium, strain B23, showed the best productivity among 186 strains tested. The strain was identified taxonomically as Pseudomonas chlor or aphis. The culture and reaction conditions for the production were studied for the strain. Under the optimum conditions, 400 grams/liter of acrylamide was produced in 7.5 hr. The yield was nearly 100% with a trace amount of acrylic acid. The cell-free extract of the strain showed strong activity of nitrile hydratase toward acrylonitrile and extremely low activity of amidase toward acrylamide.  相似文献   

4.
The effect of different compounds on the enzymic action of the nitrile-hydratase used for the bioconversion of nitriles was studied. An excess of acrylonitrile as a substrate was shown to inhibit the activity of the enzyme. This inhibition occurred only at relatively high substrate concentrations (0.2 mol/l or more). The nitrile bioconversion products (acrylamide, propionamide) and their structural analogues (acrylic acid, thioacetamide) were shown to inhibit the enzyme competitively. The most important inhibition found was that of cyanide (Ki= 0.004 mol/l), a break down product of some nitriles. By using an acetamidase-negative mutant, amides were shown to inhibit biosynthesis of nitrile-hydratase. An identical result was obtained with thioacetamide, a non-substrate compound for acetamidase. This compound repressed the biosynthesis of nitrile-hydratase by both the wild type and the acetamidase-negative mutant to the same extent.  相似文献   

5.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

6.
7.
The object of the work was to study the role of coryneform microorganisms in the degradation of residues of ordram, a thiocarbamate herbicide. Only rhodococci were found to play an essential role in the process among these bacteria. Rhodococci actively oxidized the herbicide if its concentration was several milligrams per litre though its high concentrations (over 100 mg/l) inhibited the growth of the bacteria. This group of microorganisms, together with bacilli and certain cocci, belongs to the most active part of saprophytic microflora which transforms the molecule of the original herbicide yielding keto and hydroxy derivatives, sulfoxide, products of S-dealkylation and cleavage of the hexamethyleneimine ring. The incidence of rhodococci remains at a high level if the appropriate cosubstrates are added. In the conditions of rice check plots, rhodococci can play an essential role in the degradation of the herbicide.  相似文献   

8.
A new versatile acrylonitrile-bioconverting strain isolated from a petroleum-contaminated sludge sample and identified as Rhodococcus ruber AKSH-84 was used for optimization of medium and biotransformation conditions for nitrilase activity to produce acrylic acid. A simple and rapid HPLC protocol was optimized for quantification of acrylic acid, acrylamide, and acrylonitrile. The optimal medium conditions for nitrilase activity were pH of 7.0, temperature of 30degreesC, agitation of 150 rpm, and inoculum level of 2%. Glycerol as a carbon source and sodium nitrate as the nitrogen source provided good nutritional sources for achieving good biotransformation. Nitrilase activity was constitutive in nature and was in the exponential growth phase after 24 h of incubation under optimal conditions without addition of any inducer. The substrate preference was acrylonitrile and acetonitrile. The present work demonstrates the biotransformation of acrylonitrile to acrylic acid with the new strain, R. ruber AKSH-84, which can be used in green biosynthesis of acrylic acid for biotechnological processes. The nitrilase produced by the isolate was purified and characterized.  相似文献   

9.
The culture conditions for Rhodococcus sp. N-774 cells showing high nitrile hydratase activity and the reaction conditions for acrylamide production by the resting cells were optimized. Thiamine was essential for the growth of the strain. Yeast extract and Fe2 + or Fe3 + remarkably promoted the formation of nitrile hydratase of the cells. The reaction proceeded optimally at temperatures below 30°C. Incubation for 1 hr at above 40°C resulted in inactivation of the enzyme. Through reaction at a temperature as low as 0°C, the inhibition and inactivation of the enzyme activity by the substrate, acrylonitrile, and the product, acrylamide, were remarkably reduced, and higher accumulation of acrylamide could be attained. Under the optimal conditions, a more than 20% (w/v) acrylamide solution was obtained with a conversion yield of nearly 100%. Thus, the aqueous acrylamide solution obtained showed a high enough quality for use for the commercial preparation of polyacrylamide.  相似文献   

10.
Nitriles are potential soil pollutants from industrial wastewater. There has been increased demand for efficient process for nitrile degradation process. Nitrile hydratase (NHase) has been extensively used in the production of acrylamide and treatment of organocyanide contaminated industrial effluents. The NHase of Mesorhizobium sp., isolated from polyacrylonitrile activated sludge from fiber manufacturing wastewater treatment systems was studied in the whole bacterial cells. Different chemicals were added to observe the variation in the percentage of acrylonitrile converted into acrylamide. The result indicated that cobalt ions were the NHase cofactor and could increase the NHase activity. The addition of propionaldehyde, or butyraldehyde could enhance the acrylonitrile conversion rate. Therefore, acrylamide could be accumulated effectively and the percentage of acrylonitrile converted into acrylamide increased. Propionaldehyde was the most effective NHase activator. The percentage of acrylonitrile converted into acrylamide was nearly 100% at 3.8 h when propionaldehyde was added at about 207.4 mg/l. The addition of benzaldehyde was unable to increase the percentage of acrylonitrile converted into acrylamide. EDTA and acrylamide showed no effect on NHase activity. However, 0.1 mg/l of Ag2SO4 would slightly inhibit NHase activity, producing an acrylonitrile conversion rate of 492.9 mg/l with 54.9% converted at 29.1 h. The ability of the acrylonitrile biotransformation was completely inhibited if the Ag2SO4 concentration was above 0.5 mg/l.  相似文献   

11.
丙烯酸是一种重要的化工原料,被广泛应用于涂料、超吸附材料等领域。目前丙烯酸的获得主要通过丙烯氧化,但由于石油资源日渐枯竭以及生产过程造成的环境问题,利用生物质资源生产丙烯酸已成为研究热点。介绍了丙烯酸的性质及其在工业上的应用,并详细综述了生物法制备丙烯酸的研究进展。根据丙烯酸生产中是否应用传统的化工过程,将其分为半生物合成和全生物合成。半生物法主要包括乳酸化学法脱水以及丙烯腈、丙烯酰胺的生物转化;全生物法主要包括乳酸生物法脱水、3-羟基丙酸途径、糖直接发酵法以及DMSP(二甲基巯基丙酸内盐)途径。由于乳酸发酵的工艺成熟、原料易得,因此对乳酸脱水进行了重点介绍,其中生物法脱水符合可持续发展的要求,对其进行了详细介绍。同时还分析了各种方法的优缺点,探讨了利用生物质资源生产丙烯酸的研究趋势。  相似文献   

12.
In order to enable competitive manufacturing routes, most biocatalysts must be tailor-made for their processes. Enzymes from nature rarely have the combined properties necessary for industrial chemical production such as high activity and selectivity on non-natural substrates and toleration of high concentrations of organic media over the wide range of conditions (decreasing substrate, increasing product concentrations, solvents, etc.,) that will be present over the course of a manufacturing process. With the advances in protein engineering technologies, a variety of enzyme properties can be altered simultaneously, if the appropriate screening parameters are employed. Here we discuss the process of directed evolution for the generation of commercially viable biocatalysts for the production of fine chemicals, and how novel approaches have helped to overcome some of the challenges.  相似文献   

13.
A computer-aided solvent screening methodology is described and tested for biocatalytic systems composed of enzyme, essential water and substrates/products dissolved in a solvent medium, without cells. The methodology is computationally simple, using group contribution methods for calculating constrained properties related to chemical reaction equilibrium, substrate and product solubility, water solubility, boiling points, toxicity and others. Two examples are provided, covering the screening of solvents for lipase-catalyzed transesterification of octanol and inulin with vinyl laurate. Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts.  相似文献   

14.
Nitriles are potential soil pollutants from industrial wastewater. There has been increased demand for an efficient process for the nitrile degradation process. Nitrile hydratase (NHase) has been extensively used in the production of acrylamide and treatment of organocyanide-contaminated industrial effluents. The NHase of Mesorhizobium sp., isolated from polyacrylonitrile (PAN) activated sludge from fiber manufacturing wastewater treatment systems was studied in the whole bacterial cells. Different chemicals were added to observe the variation in the percentage of acrylonitrile converted into acrylamide. The result indicated that cobalt ions were the NHase cofactor and could increase the NHase activity. The addition of propionaldehyde, or butyraldehyde, could enhance the acrylonitrile conversion rate. Therefore, acrylamide could be accumulated effectively and the percentage of acrylonitrile converted into acrylamide increased. Propionaldehyde was the most effective NHase activator. The percentage of acrylonitrile converted into acrylamide was nearly 100% at 3.8 h when propionaldehyde was added at about 207.4 mg/l. The addition of benzaldehyde was unable to increase the percentage of acrylonitrile converted into acrylamide. EDTA and acrylamide showed no effect on NHase activity. However, 0.1 mg/l of Ag2SO4 would slightly inhibit NHase activity, producing an acrylonitrile conversion rate of 492.9 mg/l with 54.9% converted at 29.1 h. The ability of the acrylonitrile biotransformation was completely inhibited if the Ag2SO4 concentration was above 0.5 mg/l. Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2008, Vol. 44, No. 3, pp. 304–307. The text was submitted in English.  相似文献   

15.
《Process Biochemistry》2010,45(6):866-873
Strain Amycolatopsis sp. IITR215 was isolated from a sewage sample using polyacrylonitrile powder as the sole nitrogen source. Identification was performed by 16S rDNA analysis. The isolated strain harbored multiple nitrile-metabolizing enzymes having a wide range of substrate specificities. It metabolized nitrile and amide compounds with constitutive enzymes. Studies using an amidase inhibitor showed that hydrolysis of acrylonitrile and acrylamide occurred due to nitrile hydratase and amidase, respectively, while hydrolysis of hexanenitrile was due to the action of either nitrilase or a second nitrile hydratase/amidase system. The inhibitory effects of N-bromosuccinimide and N-ethylmaleimide on enzymes of this culture were also studied and this further indicated the involvement of either a nitrilase or a second nitrile hydratase/amidase system for hydrolysis of hexanenitrile. Interestingly, hexanenitrile hydrolysis exhibited an optimum temperature of 55 °C, whereas acrylonitrile and acrylamide hydrolysis showed an optimum temperature of 45 °C. The optimum pH was 5.8 for hexanenitrile hydrolysis and 7.0 for acrylonitrile and acrylamide hydrolysis. Hexanenitrile hydrolysis by enzymes of this strain showed better organic solvent tolerance in the presence of alcohols. The maximum enzyme activity of nitrile-metabolizing enzymes was found using media containing isobutyramide as the nitrogen source. This is the first report on constitutive multiple enzymes from the Amycolatopsis genus.  相似文献   

16.
在以丙烯腈为原料 ,微生物转化生产丙烯酰胺的过程中 ,酶催化反应是过程的关键。为了了解酶催化的动力学 ,本研究以自由细胞的酶为催化剂 ,进行了腈水合酶的反应动力学和失活动力学的研究。首先研究了菌体浓度、温度、pH值、丙烯腈浓度、丙烯酰胺浓度等对腈水合酶催化反应速度的影响。结果表明 ,在这些因素中 ,温度和丙烯酰胺浓度是最主要的影响因素。 2 8℃时酶活为 5 6 5 9u mL(菌液 ) ,在 5℃时的反应速率仅为 2 8℃时的11 72 % ,相应的表观酶活为 6 6 3u mL(菌液 )。而在丙烯酰胺 45 %浓度条件下的酶活大约只有丙烯酰胺 5 %浓度下的酶活的 1 2。经过对不同温度下的反应速度的研究 ,得到腈水合酶水合反应的活化能为 6 5 5 7kJ·mol- 1 。本文进一步研究了自由细胞状态下 ,菌体浓度、pH值、温度、丙烯腈浓度、丙烯酰胺浓度对腈水合酶失活的影响 ,得到了失活动力学。结果表明 ,在这些因素中 ,对酶失活影响的最主要因素还是温度和丙烯酰胺浓度。尤其当丙烯酰胺浓度到达 35 %时 ,酶活下降得很快 ,在 5 5h后 ,酶活几乎为零。而在丙烯酰胺浓度为 10 %的情况下 ,5 5h的酶活仍然还存在约 5 0 %。试验结果还表明 ,丙烯腈对酶的稳定性的影响很小。经过数据处理 ,得到的 2 8℃的酶失活速率常数为 5℃下的 2 1 7  相似文献   

17.
Rhodococcus ruber strain gtl, possessing nitrile hydratase activity, was immobilized by adsorption on carbon supports differing in structure and porosity. The adsorption capacity of the supports towards cells, the substrate of the nitrile hydratase reaction (acrylonitrile), and the product (acrylamide) was studied. Also, the effect of immobilization and nitrile hydratase activity of bacteria was investigated, and the operational stability of the immobilized biocatalyst was determined. It was shown that crushed and granulated active coals were more appropriate for immobilization than fibrous carbon adsorbents.  相似文献   

18.
Species of the genus Variovorax are often isolated from nitrile or amide-containing organic compound-contaminated soil. However, there have been few biological characterizations of Variovorax and their contaminant-degrading enzymes. Previously, we reported a new soil isolate, Variovorax boronicumulans CGMCC 4969, and its nitrile hydratase that transforms the neonicotinoid insecticide thiacloprid into an amide metabolite. In this study, we showed that CGMCC 4969 is able to degrade acrylamide, a neurotoxicant and carcinogen in animals, during cell growth in a mineral salt medium as well as in its resting state. Resting cells rapidly hydrolyzed 600 mg/L acrylamide to acrylic acid with a half-life of 2.5 min. In in vitro tests, CGMCC 4969 showed plant growth-promoting properties; it produced a siderophore, ammonia, hydrogen cyanide, and the phytohormone salicylic acid. Interestingly, in soil inoculated with this strain, 200 mg/L acrylamide was completely degraded in 4 days. Gene cloning and overexpression in the Escherichia coli strain Rosetta (DE3) pLysS resulted in the production of an aliphatic amidase of 345 amino acids that hydrolyzed acrylamide into acrylic acid. The amidase contained a conserved catalytic triad, Glu59, Lys 134, and Cys166, and an “MRHGDISSS” amino acid sequence at the N-terminal region. Variovorax boronicumulans CGMCC 4969, which is able to use acrylamide for cell growth and rapidly degrade acrylamide in soil, shows promising plant growth-promoting properties. As such, it has the potential to be developed into an effective Bioaugmentation strategy to promote growth of field crops in acrylamide-contaminated soil.  相似文献   

19.
Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, was immobilized by adsorption on carbon supports differing in structure and porosity. The adsorption capacity of the supports towards cells, the substrate of the nitrile hydratase reaction (acrylonitrile), and the product (acrylamide) was studied. Also, the effect of immobilization on nitrile hydratase activity of bacteria was investigated, and the operational stability of the immobilized biocatalyst was determined. It was shown that crushed and granulated active coals were more appropriate for immobilization than fibrous carbon adsorbents.  相似文献   

20.
Biosynthesis of acrylamide from acrylonitrile in aqueous two phase system   总被引:2,自引:0,他引:2  
Summary Acrylamide was produced from acrylonitrile usingBrevibacterium sp in aqueous two-phase systems composed of polyethylene glycol and potassium phosphate. The biocatalysts were almost completely partitioned in the potassium phosphate rich bottom phase. The inhibition of the active enzyme by both substrate and product could be reduced by favorable partition properties. Repeated conversions over five runs were accomplished without a significant loss of enzyme activity. The yields of acrylamide obtained from the top phase were 0.736, 0.834, 0.865, 0.848 and 0.917 mol acrylamide/mol acrylonitrile, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号