首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Blank 《The Journal of general physiology》1968,52(1):191Suppl-191S208s
Transport across physical-chemical interfaces is considered in connection with three particular problems of biological interfaces: the structure and properties of cell membranes, the properties of the lung surfactant, and the effects of ionic currents across excitable membranes. With regard to cell membranes, studies of monolayer permeation suggest that permselectivity on the basis of size is a property of bilayer structure and probably gives rise to the observed dependence of the permeability on partition coefficients. The permeabilities of lipid and protein monolayers are consistent with the bimolecular leaflet (BML) model of the membrane and not with mosaic models. Experiments with the lung surfactant indicate that, in addition to its surface tension-lowering properties, it is unusual in its ability to form a strong two-dimensional network, which probably contributes to alveolar stability. Finally, the results of studies of interfacial ionic transference suggest a new way of accounting for the ionic fluxes in excitable membranes during an action potential without assuming ion-selective pores or carriers. In the suggested mechanism, it is possible to account for the change in ionic selectivity and the proper phasing of the fluxes, as well as other aspects of excitation in natural membranes.  相似文献   

2.
On the premise that the contributions from ion-ion interaction energy terms to chemical potential of an ion in inhomogeneous regions cannot be neglected, the classical expression for electrochemical potential is modified. Resulting basic differential equations and their implications regarding ion distributions in inhomogeneous regions are presented. It is shown that a necessary consequence is the existence of a dielectric profile in inhomogeneous regions due to nonvanishing interaction energy terms of the chemical potential.  相似文献   

3.
In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.  相似文献   

4.
The stability of an interface-binding chloroperoxidase (CPO) against the deactivation effect of H(2)O(2) was examined. Native CPO was conjugated with polystyrene and thus self-assembled at the water-oil interface. Although the interface-assembled CPO showed improved stability as compared to native CPO, enzyme deactivation as a result of the side effect of H(2)O(2), still limits the overall productivity of the enzyme. Two approaches to further improve the stability of CPO were examined in this work. In one approach, several stabilizers including poly(ethylene glycol) (PEG), PEI, glycerol, sugars and sucrose monododecanoate were used; while in a second approach, in situ generation of hydrogen peroxide (H(2)O(2)) by using glucose oxidase (GOx) was applied. PEG was found exceptional in that it increased both the operational and storage stability of CPO. The best improvement of enzyme productivity was obtained with addition of PEG which led to an increase of 57% for interface-bound CPO and 33% for native CPO. One interesting observation with PEI is that it enhanced the storage stability against H(2)O(2) deactivation, but did not affect the enzyme's operational stability. On the other hand, glucose enhanced the operational stability by two folds, but exhibited no significant effect on storage stability. It was also found that the extended operational lifetime of CPO with in situ generation of H(2)O(2) by GOx was a result that combines the stabilizing effect of glucose and lowered concentration of H(2)O(2). Interestingly, the addition of stabilizers could improve the enantioselectivity of CPO by as much as 10%.  相似文献   

5.
6.
7.
Light-induced interfacial potentials in photoreceptor membranes   总被引:1,自引:0,他引:1       下载免费PDF全文
A rapid change in an interfacial electric potential of isolated bovine rod outer segment disk membranes occurs upon illumination. This potential change, which has been detected by the use of spin-labeled hydrophobic ions, apparently occurs within a low dielectric boundary region of the membrane near the external (cytoplasmic) surface and is positive with respect to the aqueous exterior of the disk. The magnitude of the potential change is pH-and temperature-dependent and appears with a first-order half-time of approximately 7 ms at 21 degrees C. A simple model in which one positive charge per bleached rhodopsin is translocated from the cytoplasmic aqueous space into the membrane low dielectric boundary region readily accounts for all experimental observations. The great similarity of the boundary potential change to the R2 phase of the early receptor potential suggests that the two have the same molecular origin.  相似文献   

8.
A series of graphene (GR) pull-out simulations based on molecular dynamics (MD) were carried out to investigate the interfacial mechanical properties between GR and a polymer matrix (polyethylene: PE). The effects of pull-out velocity, number of vacancy defect in GR and temperature on the interfacial mechanical properties of a GR/PE nanocomposite system were explored. The obtained results showed that the pull-out velocity and the temperature have significant influences on the interfacial mechanical properties for a perfect GR. Moderate vacancy defects in GR can effectively enhance the interfacial mechanical properties in GR-based polymer nanocomposites.  相似文献   

9.
Structure and interfacial properties of human apolipoprotein A-V   总被引:17,自引:0,他引:17  
Apolipoprotein A-V (apoA-V), the newest member of the plasma apolipoprotein family, was recently discovered by comparison of the mouse and human genomes. Studies in rodents and population surveys of human apoA-V polymorphisms have noted a strong effect of apoA-V on plasma triglyceride levels. Toward the elucidation of the biologic function of apoA-V, we used spectroscopic and surface chemistry techniques to probe its structure and interfacial activity. Computer-assisted sequence analysis of apoA-V predicts that it is very hydrophobic, contains a significant amount of alpha-helical secondary structure, and probably is composed of discrete structural regions with varying degrees of lipid affinity. Fluorescence spectroscopy of recombinant human apoA-V provided evidence of tertiary folding, and light scattering studies indicated that apoA-V transforms dimyristoylphosphatidylcholine vesicles into discoidal complexes with an efficiency similar to that of apoA-I. Surface chemistry techniques revealed that apoA-V displays high affinity, low elasticity, and slow binding kinetics at hydrophobic interfaces, properties we propose may retard triglyceride-rich particle assembly. Metabolic labeling and immunofluorescence studies of COS-1 cells transfected with human apoA-V demonstrated that apoA-V is poorly secreted, remains associated with the endoplasmic reticulum, and does not traffic to the Golgi. Given that overexpression of the apoA-V gene lowers plasma triglycerides in mice, these data together suggest that apoA-V may function intracellularly to modulate hepatic VLDL synthesis and/or secretion.  相似文献   

10.
Crane JM  Hall SB 《Biophysical journal》2001,80(4):1863-1872
Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.  相似文献   

11.
Interfacial proteins function in unique heterogeneous solvent environments, such as water–oil interfaces. One important example is microbial lipase, which is activated in an oil‐water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all‐atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed‐gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open‐gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α‐helical, as we previously observed in studies that address water–oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.  相似文献   

12.
The first study of enzymatic hydrolysis of phospholipid tubules is reported. Phosphatidylcholines with acyl chains containing diacetylene groups are known to form tubular microstructures in which the lipids are tightly packed and crystalline. These tubules can be used to probe the role of microstructural form in the mechanics of interfacial enzymatic degradation by such enzymes as phospholipase A2 (PLA2). Hydrolysis by PLA2 may occur most rapidly in regions having the greatest number of bilayer packing defects, such as those that must be found at tubule ends. A microstructure that degrades primarily from its ends should exhibit zero-order kinetics, because the area of the degrading tubule and remains constant as the length of the microstructure decreases. Free fatty acid concentration was measured to follow the generation of PLA2 hydrolysis products in suspensions of diacetylenic phospholipid tubules. The kinetics of tubule hydrolysis were essentially zero-order until conversion was complete, as predicted. However, microscopy of partially hydrolyzed tubules revealed the formation of multiple discrete anionic product domains along the length of degrading tubules as well as in insoluble reaction product microstructures. Furthermore, the rate of tubule hydrolysis was only moderately enhanced by increasing the number of tubule ends, which is consistent with the conclusion that tubule ends are not the only sites of hydrolysis. A model that reconciles the overall kinetics with the morphological evidence is proposed.  相似文献   

13.
Certain aspects of blood interfacial phenomena--red blood cells   总被引:1,自引:0,他引:1  
  相似文献   

14.
Structure and interfacial properties of chicken apolipoprotein A-IV   总被引:3,自引:0,他引:3  
To gain insight into the evolution and function of apolipoprotein A-IV (apoA-IV) we compared structural and interfacial properties of chicken apoA-IV, human apoA-IV, and a recombinant human apoA-IV truncation mutant lacking the carboxyl terminus. Circular dichroism thermal denaturation studies revealed that the thermodynamic stability of the alpha-helical structure in chicken apoA-IV (DeltaH = 71.0 kcal/mol) was greater than that of human apoA-IV (63.6 kcal/mol), but similar to that of human apoA-I (73.1 kcal/mol). Fluorescence chemical denaturation studies revealed a multiphasic red shift with a 65% increase in relative quantum yield that preceded loss of alpha-helical structure, a phenomenon previously noted for human apoA-IV. The elastic modulus of chicken apoA-IV at the air/water interface was 13.7 mN/m, versus 21.7 mN/m for human apoA-IV and 7.6 mN/m for apoA-I. The interfacial exclusion pressure of chicken apoA-IV for phospholipid monolayers was 31.1 mN/m, versus 33.0 mN/m for human A-I and 28.5 mN/m for apoA-IV.We conclude that the secondary structural features of chicken apoA-IV more closely resemble those of human apoA-I, which may reflect the evolution of apoA-IV by intraexonic duplication of the apoA-I gene. However, the interfacial properties of chicken apoA-IV are intermediate between those of human apoA-I and apoA-IV, which suggests that chicken apoA-IV may represent an ancestral prototype of mammalian apoA-IV, which subsequently underwent further structural change as an evolutionary response to the requisites of mammalian lipoprotein metabolism.  相似文献   

15.
A unique interface-binding chloroperoxidase (CPO) was developed and examined for interfacial biocatalysis. Native CPO was conjugated with polystyrene (PS) to form a surfactant-like structure that self assembled at oil-water interfaces. While enantioselectivity of the enzyme was maintained, the interfacial assembly of the enzyme improved its overall catalytic efficiency as compared to that observed with the enzyme contained in the bulk aqueous phase. The PS conjugated CPO (PS-CPO) showed a 2.5-fold enhancement of enzyme productivity versus native CPO under batch reaction conditions for the epoxidation of styrene, whereas a 25-fold improvement was realized in a continuous feeding reaction to reach a productivity of 10 micromol h-1 mg protein-1. The interface-binding enzyme also demonstrated several other advantages such as suppressing unwanted side reactions including the hydrolysis of styrene epoxide products, stabilizing the enzyme by limiting its exposure to both the oxidant H2O2 and epoxide products, and alleviating the deactivating effect of interfacial stress on enzymes by functioning as a surfactant.  相似文献   

16.
17.
18.
Based on results from linear hydrodynamic analysis, a study about the influence of mechanical contribution to the interfacial tension on the mechanical stability was performed for an erythrocyte membrane model. This analysis gave the characteristic dispersion equation by solving the linearized dynamic equations. Values of the parameters related to the erythrocyte membrane were used to obtain the critical stability curves as a function of mechanical interfacial tension. The numerical values from this study were applied to calculate probable values of the total interfacial tension (sum of electrical and mechanical contributions) and the results were compared with values from literature. According to this model, the mechanical stability of membrane increases with the increasing of the mechanical surface tension. The values suggested by hydrodynamic analysis for probable values of the interfacial tension of erythrocyte membrane were among the values pointed out in the literature.  相似文献   

19.
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET.  相似文献   

20.
Lars J.C. Jeuken 《BBA》2003,1604(2):67-76
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号