首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tio M  Toh J  Fang W  Blanco J  Udolph G 《PloS one》2011,6(11):e26879
In Drosophila, dopaminergic (DA) neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f) mutations of genes of the apical complex proteins in the asymmetric cell division (ACD) machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.  相似文献   

2.
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.  相似文献   

3.
J B Thomas  S T Crews 《FASEB journal》1990,4(8):2476-2482
Making a functional nervous system involves the production of specific types of neurons in characteristic locations and their ability to find and synapse with appropriate target cells. By capitalizing on the advanced genetics and molecular biology of Drosophila, a rapidly growing number of genes have been identified that control these events. Studies of the expression and function of these genes in single, uniquely identified cells is possible because of the relative simplicity of the Drosophila embryonic nervous system. A class of neurogenic genes, including N, Dl, and E(spl), controls the emergence of the entire neuronal precursor population, whereas some of the segmentation genes, such as ftz and eve, control the fates of individual neurons. Later in development, genes encoding cell-surface molecules, called fasciclins, may be involved in the ability of growing neurons to recognize and elongate axons along specific pathways to reach their synaptic targets.  相似文献   

4.
Somatic sensation relies on the transduction of physical stimuli into electrical signals by sensory neurons of the dorsal root ganglia. Little is known about how and when during development different types of sensory neurons acquire transduction competence. We directly investigated the emergence of electrical excitability and mechanosensitivity of embryonic and postnatal mouse sensory neurons. We show that sensory neurons acquire mechanotransduction competence coincident with peripheral target innervation. Mechanotransduction competence arises in different sensory lineages in waves, coordinated by distinct developmental mechanisms. Sensory neurons that are mechanoreceptors or proprioceptors acquire mature mechanotransduction indistinguishable from the adult already at E13. This process is independent of neurotrophin‐3 and may be driven by a genetic program. In contrast, most nociceptive (pain sensing) sensory neurons acquire mechanosensitive competence as a result of exposure to target‐derived nerve growth factor. The highly regulated process of mechanosensory acquisition unveiled here, reveals new strategies to identify molecules required for sensory neuron mechanotransduction.  相似文献   

5.
The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.  相似文献   

6.
The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.  相似文献   

7.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.  相似文献   

8.
Abstract. Neurocalcin is a calcium-binding protein that has been localized in neural and non-neural tissues of vertebrates, the arthropod Drosophila melanogaster , and in juveniles and adults of the mollusc Aplysia californica . We examine the distribution of neurocalcin in pre-hatching stages of the molluscs A. californica and Lymnaea stagnalis to elucidate where this calcium-binding protein functions in early development, as well as to localize novel neuronal populations in early stages of ontogeny. Aplysia neurocalcin (ApNc)-like immunoreactivity was localized in shell-secreting cells in embryonic stages of both A. californica and L. stagnalis . In A. californica , central and anterior regions of the embryo were diffusely labeled, as were a few identifiable neurons in veliger stages, On the other hand, in L. stagnalis , ApNc-like immunoreactivity was clearly detected in cells and fibers in the same locations as neuronal elements that have been previously identified very early in development and throughout the embryonic period using techniques to localize specific transmitters and peptides. Furthermore, additional neurons are also identified with anti- ApNc in this species. Establishing the distribution of neurocalcin-like proteins in embryonic stages of these two molluscs provides the first step to understanding the role of such proteins during development.  相似文献   

9.
Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.  相似文献   

10.
The Down syndrome cell adhesion molecule (Dscam) is a protein overexpressed in the brains of Down syndrome patients and implicated in mental retardation. Dscam is involved in axon guidance and branching in Drosophila, but cellular roles in vertebrates have yet to be elucidated. To understand its role in vertebrate development, we cloned the zebrafish homolog of Dscam and showed that it shares high amino acid identity and structure with the mammalian homologs. Zebrafish dscam is highly expressed in developing neurons, similar to what has been described in Drosophila and mouse. When dscam expression is diminished by morpholino injection, embryos display few neurons and their axons do not enter stereotyped pathways. Zebrafish dscam is also present at early embryonic stages including blastulation and gastrulation. Its loss results in early morphogenetic defects. dscam knockdown results in impaired cell movement during epiboly as well as in subsequent stages. We propose that migrating cells utilize dscam to remodel the developing embryo.  相似文献   

11.
Okuda H  Miyata S  Mori Y  Tohyama M 《FEBS letters》2007,581(24):4754-4760
The Drosophila planar cell polarity (PCP) gene prickle has been previously indicated as one of the regulators of gastrulation in the early embryonic stage. However, the functional role of prickle in the brain in particular is not known. We first indicated that mouse Prickle1 and Prickle2 are continually expressed in the brain throughout the embryonic stages and are observed to be specifically expressed in the postmitotic neurons. Furthermore, Prickle1 or Prickle2 depletion effectively decreases the neurite outgrowth levels of mouse neuroblastoma Neuro2a cells. These results indicate that mouse Prickle1 and Prickle2 possibly regulate positive neurite formation during brain development.  相似文献   

12.
Kc 167 is a cell line established from Drosophila embryonic hemocytes and has been shown to express many extracellular matrix (ECM) and other proteins important during development. We have screened monoclonal antibodies (mAbs) raised against heparin affinity purified proteins from conditioned medium of Kc 167 cells to identify novel proteins with important roles for development. One mAb recognized a protein expressed with temporary and tissue specific patterns during Drosophila embryogenesis and larval development. This approach is an alternative to screening of Expression Sequence Tag (EST) clones by in situ hybridization to initiate reverse genetics. In addition, a number of mAbs recognizing ECM proteins were also identified. These mAbs will be useful for biochemical and cell biological analyses of Drosophila ECM proteins.  相似文献   

13.
14.
Complete understanding of the ontogenesis and early development of electrical activity and its related contraction has been hampered by our inability to apply conventional electrophysiological techniques to the early embryonic heart. Direct intracellular measurement of electrical events in the early embryonic heart is impossible because the cells are too small and frail to be impaled with microelectrodes. Optical signals from voltage-sensitive dyes have provided a new and powerful tool for monitoring changes in membrane potential in a wide variety of living preparations. With this technique it is possible to make optical recordings from cells which are inaccessible to microelectrodes. An additional advantage of the optical method for recording membrane potential activity is that electrical activity can be monitored simultaneously from many sites in a preparation. Thus, applying a multiple-site optical recording method with a 100- or 144-element photodiode array and voltage-sensitive dyes, we have been able to monitor for the first time spontaneous electrical activity in pre-fused cardiac primordia in early chick embryos at the 6- and early 7-somite stages of development; we have been able to determine that the time of initiation of the heartbeat is the middle period of the 9-somite stage. In the rat embryonic heart, the onset of spontaneous electrical activity and contraction occurs at the 3-somite stage. This article describes ionic properties of the spontaneous action potential and genesis of excitation-contraction coupling in the early embryonic chick and rat hearts. In addition, an improved view of the ontogenetic sequence of spontaneous electrical activity and its implications for excitation-contraction coupling in the early embryonic heart are proposed and discussed.  相似文献   

15.
A number of neuropeptides have been described which are present in the insect nervous system. The physiological role of these neuropeptides has not yet been clarified. We have characterized a Drosophila melanogaster cDNA coding for a protein, NKD, whose sequence resembles that of mammalian G protein-coupled neuropeptide receptors. This protein shows 38% homology with the mammalian tachykinin NK3 receptor within the transmembrane domain region. Stable cell lines expressing this cDNA are responsive to Locusta migratoria tachykinin but not to other peptides of the tachykinin family. The expression of this gene is detected principally in adult fly heads, but also in the adult body and in embryos. Interestingly, NKD mRNA is detected at very early stages of Drosophila embryonic development (3 h) and reaches the highest level of expression at 12-16 h, a time which correlates with the period of major neuronal development. In situ hybridization experiments demonstrate that NKD is expressed in the central nervous system, as well as in subsets of neurons in each segment of the developing ventral ganglia. The cytological localization of this gene is at position 86C on the Drosophila third chromosome.  相似文献   

16.
The fruit fly Drosophila embryo is one of the most important model organisms in genetics and developmental biology research. To better understand the biomechanical properties involved in Drosophila embryo research, this work presents a mechanical characterization of living Drosophila embryos through the stages of embryogenesis. Measurements of the mechanical forces of Drosophila embryos are implemented using a novel, in situ, and minimally invasive force sensing tool with a resolution in the range of microN. The measurements offer an essential understanding of penetration force profiles during the microinjection of Drosophila embryos. Sequentially quantitative evaluation and analysis of the mechanical properties, such as Young's modulus, stiffness, and mechanical impedance of living Drosophila embryos are performed by extracting the force measurements throughout the stages of embryogenesis. Experimental results illustrate the changing mechanical properties of Drosophila embryos during development, and thus mathematical models are proposed. The evaluation provides a critical step toward better understanding of the biomechanical properties of Drosophila embryos during embryogenesis, and could contribute to more efficient and significant genetic and embryonic development research on Drosophila.  相似文献   

17.
Array technology is a widely used tool for gene expression profiling in various biological systems. However, the application of this method to mammalian preimplantation embryos is limited by the small amount of mRNA that can be extracted from a single embryo, which is not sufficient for array analysis. Here we report a protocolfor the rapid global amplification of embryonic mRNA that permits the generation of expression profiles from single murine blastocysts. The approach combines global PCR and 77 RNA polymerase amplification and allows the preparation of labeled, amplified RNA for array hybridization from single murine blastocysts containing approximately 1.5 pg mRNA in less than 12 h. We demonstrate that this amplification procedure is highly reproducible and does not bias original relative mRNA levels. Signal patterns from various embryonic stages of murine development revealed marked differences in mRNA expression that were in accordance with previously published data. We found genes known to be involved in embryonic apoptosis expressed at different levels in individual murine day 3.5 blastocysts. This technique can thus be used to assess embryonic viability and investigate molecular mechanisms of embryonic development.  相似文献   

18.
Genetic screens for recessive mutations continue to provide the basis for much of the modern work on Drosophila developmental genetics. However, many of the mutations isolated in these screens cause embryonic or early larval lethality. Studying the effects of such mutations on later developmental events is still possible, however, using genetic mosaic techniques, which limit losses or gains of genetic function to specific tissues and cells, and to selected stages of development. A variety of genetic mosaic techniques have been developed, and these have led to key insights into developmental processes in the fly. Variations on these techniques can also be used to screen for novel genes that are involved in non-embryonic patterning and growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号