首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A thermotolerant fungal strainAspergillus terreus produced high activities of cellulolytic enzymes when grown in shake flasks for 8 days at 40°C or 14 days at 28°C in medium containing 2.5% (w/v) cellulose powder and 1% (w/v) wheat bran. There was little difference between the final activities of endo-(1,4)--glucanase (ca. 14.4 U/ml); filter paper activity (ca. 1.3 U/ml) and -glucosidase (ca. 10 U/ml). Endoglucanase had maximum activity at 60°C and pH 3.8; the other two enzymes were optimal at 60°C and pH 4.8. The maximum hydrolysis of different cellulosic substrates (about 50%) was obtained within 48 h when 1.1 U/ml of filter paper cellulase activity were employed to saccharify 100 mg alkali-treated cotton, filter paper, bagasse, and rice straw at 50°C and pH 4.8. The major end-product, glucose, was produced from all substrates, with traces of cellobiose and other larger oligosaccharides being present in rice straw hydrolysates.  相似文献   

2.
Enzyme production by a new mesophilic Streptomyces isolate was investigated which grew optimally on 1% (w/v) xylan and 10% (w/v) wheat bran at pH 7 and 37 °C. Xylan induced only CMCase (0.29 U/ml) besides xylanase (22–35 U/ml, 40–49 U/mg protein). Wheat bran induced xylanase (105 U/ml, 17.5 U/mg protein), CMCase (0.74 U/ml), -xylosidase (0.009 U/ml), -glucosidase (0.026 U/ml), -L-arabinofuranosidase (0.049 U/ml), amylase (1.6 U/ml) and phytase (0.432 U/ml). The isolate was amenable to solid state cultivation and produced increased levels of xylanase (146 U/ml, 28 U/mg protein). The pH and temperature optima of the crude xylanase activity were 5.5 and 65 °C respectively. The pI was 6.0 as determined by PEG precipitation. The crude enzyme was applied in treatment of paper pulp and predigestion of poultry feed and was found to be effective in releasing sugars from both and soluble phosphorus from the latter.  相似文献   

3.
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and -xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 °C or 42 °C. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 °C; and levels were three- to five-fold higher than at 25 °C. Secretion of xylanase and -xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 °C for extracellular and 90 °C for intracellular -xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 °C to 55 °C when the fungus was cultivated at 42 °C. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermostability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE–cellulose and Biogel P-60 columns.  相似文献   

4.
Plate screening tests were designed for the selection and isolation of mutant strains of the fungus Aspergillus awamori CMI 142717 showing over-production and constitutive synthesis of xylanase and -xylosidase. Following mutation by N-methyl-N-nitro-N-nitrosoguanidine, nitrous acid and UV (254 nm), two generations of mutants were isolated and cultured in shake fiasks containing glucose, ball-milled oat straw or oat speit xylan as carbon source. Growth of a number of selected mutants in shake flask culture on medium containing oat spelt xylan produced the highest titres of xylanase and -xylosidase. Thus, xylanase producton by mutant AANTG43 was 132 U/ml when the Somogyl-Nelson (alkaline copper) method of measuring reducing sugar released was used, or 1160 U/ml using the dinitrosalicylic acid method of reducing sugar analysis. These values were 8-fold higher than those produced by the wild type. A 20-fold improvement in -xylosidase production was produced by mutant AANO19 (3.51 U/ml). The titres for these two enzyme activities are the highest recorded so far in the literature. Mutant AANTG43 also produced high levels of xylanase (49.8 U/ml) in submerged culture in a fermenter and showed a substantial improvement in the overall productivity of enzyme compared to the wild type strain.The authors are with the Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, UK.  相似文献   

5.
Xylanase production was performed by growing a Bacillus isolate on agricultural by-products, wheat straw, wheat bran, corn cobs and cotton bagasse. A maximum xylanase activity of 180 U/ml was obtained together with a cellulase activity of 0.03 U/ml on 4 (w/v) corn cobs. Electrophoretic analysis showed the presence of three endo--1, 4-xylanases having molecular weights of about 22, 23 and 40 kDa. Xylanolytic activity was stable up to 50 °C in the pH range of 4.5–10 and the highest activity was observed at 70 °C and pH 6.5.  相似文献   

6.
Seven indigenous thermophilic fungi were screened for cellulase and xylanase production when grown on Leptochloa fusca (kallar grass) straw. Aspergillus fumigatus produced the highest activities of 0.4, 2.5, 3.5 and 0.14 U/ml of filter paper cellulase, CM-cellulase, xylanase and -xylosidase, respectively. Sporotrichum thermophile produced 0.47 -glucosidase/ml. Chaetomium thermophile, Humicola grisea and Torula thermophila had lower activities than the other thermophilic fungi.The authors are with the National Institute for Biotechnology & Genetic Engineering, P.O. Box 577, Faisalabad, Pakistan.  相似文献   

7.
The ligninolytic white-rot fungus Phanerochaete chrysosporium BKM-F-1767 produced extracellular cellulolytic enzymes (carboxymethylcellulase, CMCase and -glucosidase) and xylanolytic enzymes (xylanase and -xylosidase) in liquid medium containing 1.0% sugarcane bagasse with or without 1.0% glucose. The changes in pH and soluble protein content were monitored in the culture filtrates. The results obtained showed that the pH decreased after 3 days and then increased. The soluble protein content increased and reached the maximum value after 12 days. The results showed that the activities of enzymes were higher in the case of sugarcane bagasse without glucose. The characterization study indicated that the optimum pH values were 4.6, 4.2, 5.0 and 5.0 for CMCase, -glucosidase, xylanase and -xylosidase, respectively and the optimum temperatures were 60, 70, 65 and 60 °C for the investigated enzymes, respectively. The results showed also that after prolonged heating (5 h) at 60 °C, CMCase, -glucosidase, xylanase and -xylosidase retained 81.2, 86.8, 51.5 and 27.4% activity, respectively.  相似文献   

8.
Thermotolerant Emericella nidulans NK-62 was isolated from bird nesting material and was tested for its ability to produce xylanase. The fungus when grown on a medium containing wheat bran (2% w/v) supplemented with Czapek's mineral salt solution at 45 °C for 7 days produced 362 IU/ml of xylanase (EC 3.2.1.8). The specific activity of E. nidulans NK-62 xylanase was found to be 275 IU/mg of total protein. The enzyme was found to be active over a broad temperature and pH range with 60 °C as optimum temperature for enzyme activity. The enzyme was stable at 50 °C and its half-life at 55 °C was 45 min. -xylosidase (EC 3.2.1.37) and carboxymethylcellulase (EC 3.2.1.4) activities, 0.018 and 0.21 IU/ml respectively, were also noticed. The fungus was screened for its ability to produce xylanase on four different lignocellulosic substrates. It produced 318.9 IU/ml of cellulase-free xylanase on corn cobs. The fungus could also utilize lentil bran (seed husk of Lens esculentus) and meal of groundnut shells to produce 84.8 and 17.3 IU/ml xylanase respectively.  相似文献   

9.
A thermostable -xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed -xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl -d-xylopyranoside was at 90 °C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 °C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 °C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg–1 on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the -xylosidase was 0.13 mm for pNPX with a V max of 280 U mg–1. When the purified -xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

10.
Summary Aspergillus niger NCIM 1207 producing significantly high levels of -glucosidase was found to secrete hemicellulolytic enzymes (xylanase and -xylosidase) in the culture medium. High yields of -xylosidase were obtained when it was grown on either xylan (3%) or wheat bran (4%). Cellulose was a poor inducer of -xylosidase. The pH and temperature optima for-xylosidase were 4.5 and 65°C respectively.NCL Communication No. 3751  相似文献   

11.
Summary Cellulomonas and Micrococcus spp. grew well at 30°C, pH 7.0, and produced carboxymethylcellulase (CMCase) and xylanase enzymes. Only one species of Micrococcus was able to produce an appreciable amount of -glucosidase. This is the first report where Micrococcus sp., isolated from termite gut, was able to produce all three enzymes (i.e. CMCase, xylanase and -glucosidase) required for degradation of cellulosic and hemicellulosic substrates. Offprint requests to: A. Varma  相似文献   

12.
When Cellulomonas flavigena CDBB-531 was grown on glucose, xylose, glycerol, solka floc, sugarcane bagasse or xylan, xylanase activity was found only in the fermentation broth, while -xylosidase activity was always associated with the cells. Both enzymes were inducible, sugar-cane bagasse was the best inducer, solka floc and avicel were moderately good, while xylan was poor. A synergistic effect on xylanase and -xylosidase synthesis was observed when cellulose and hemicellulose were used together as carbon sources. When this strain was grown on glucose, cellobiose, arabinose or xylose, only low levels of both enzymes were detected. These results indicate that xylanase and -xylosidase were carbon-source-repressed by readily metabolizable substrates. The effect of glycerol on enzymes that were already induced was studied. The addition of glycerol caused a significant decrease in the levels of xylanases, while -xylosidase activity remained unchanged.  相似文献   

13.
The maximum yield of -glucosidase by A. niger KK2 mutant, grown on the basal medium for 7 days, was 514 I U g–1 ground rice straw, and was about twice those obtained from wheat straw or bran by previous researchers. Optimal activity of -glucosidase was at 60–70 °C and pH 4.8.  相似文献   

14.
Summary Paecilomyces varioti produced an extracellular xylanase and B-xylosidase when cultured in a medium containing xylan and corn steep liquor. Xylose (2%, w/v) totally inhibited production of both enzymes. The enzymes were purified and both had a pH optimum of 4.0. The xylanase had a molecular weight of 20,000, an isoelectric point of 5.2 and was inactive on all substrates tested except xylan. The -xylosidase, a glycoprotein, had a molecular weight of 67,000, an isoelectric point of 4.0 and had highest activity on p-nitrophenyl--D-xyloside. The xylanase had a Km of 49.5 mg/ml for xylan and the -xylosidase had a Km of 5.4 mM for p-nitrophenyl--D-xyloside.  相似文献   

15.
Summary The 7.7 Mdal PstI fragment of Bacillus pumilus IPO containing genes for xylan degradation, xylanase, and -xylosidase was inserted at the PstI site of pBR322 and cloned in E. coli C600. The hybrid plasmid thus formed was named pOXN29. The amount of xylanase and -xylosidase expressed in E. coli harboring pOXN29 was about 6% and 20% of the activity produced by the donor, B. pumilus. The reverse orientation of the inserted fragment resulted respectively in 5 times and 50 times increases in xylanase and -xylosidase productivities. Both enzymes expressed in E. coli transformants were shown to be indistinguishable from those of B. pumilus by immunological and chemical criteria. Digestion of pOXN29 with BglII produced two fragments; one was 6.7 Mdal in size and contained the whole pBR322 and the -xylosidase gene, and the other was 3.7 Mdal and coded for xylanase. Analysis of enzymes expressed in the transformant cells indicated that neither enzyme was secreted into the culture medium, periplasm nor membrane bound, although xylanase but not -xylosidase, was secreted into the medium in a B. pumilus culture.  相似文献   

16.
Summary -Xylosidase was obtained from Aureobasidium pullulans CBS 58475 with an activity of 0.35 units/ml culture filtrate. The production of the enzyme was strongly inducible. -Xylosidase was purified in two steps by anion exchange and gel-permeation chromatography to high purity. The enzyme is a glycoprotein with an apparent molecular mass of 224 kDa in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and separates into two subunits of equal molecular mass. After SDS-PAGE -xylosidase could be renatured and stained with methylumbelliferyl--xylopyranoside. The enzyme was able to split substrates of other glycosidases. The maximum activity was reached at pH 4.5 and 80° C. -Xylosidase showed high stability over a broad pH range from pH 2.0 to 9.5 and up to 70° C. Analysis of cleavage patterns revealed that the enzyme was a typical glycosidase. Larger oligosaccharides consisting of xylose were degraded by an exomechanism together with a transxylosylation reaction.  相似文献   

17.
Summary Two xylanolytic enzymes, xylanase and -xylosidase from the yeast Pichia stipitis were purified to homogeneity and characterized. Both enzymes are secreted into the culture medium upon growth on xylan. The xylanase is a glycoprotein with an approximate molecular mass of 43 kDa. The N-linked carbohydrate content was estimated to be 26% by endoglycosidase H digestion. The -xylosidase protein has a molecular mass of 37 kDa as determined by sodium dodecyl sulphate gel electrophoresis. Synthesis of xylanase was found to be inducible by xylan and repressible by xylose and glucose. By contrast, -xylosidase is synthesized constitutively to a considerable degree. The purified -xylosidase is able to hydrolyse aryl--D-glucosides with an even higher rate than -xylosides. Thus, this enzyme may not be a specific component of the xylan-degrading system of P. stipitis. Offprint requests to: M. Ciriary  相似文献   

18.
Penicillium purpurogenum was mutated with u.v. light to increase xylanase production. The best mutant, UV-64, was treated with N-methyl-N'-nitro-N-nitrosoguanidine and a second generation of mutants was obtained (NG-188 and NG-737). NG-737 produced 125 U of xylanase/ml when grown on oat spelts xylan supplemented with wheat bran compared with 69 U/ml for the wild-type strain. The mutants also showed a 2.2-fold increase in -xylosidase as compared with the wild-type.  相似文献   

19.
Summary The production of cellulases and of xylanase by Streptomyces lividans 1326 was studied under different growth conditions. The strain grew between 18°C and 46°C and is therefore thermotolerant. Submerged cultures of the microorganism, when grown on a defined salt medium containing xylan as main carbon source, exhibited an overall cellulolytic activity as determined by the filter paper test. S. lividans produced optimal levels of extracellular -1,4-glucan-glucanohydrolase (1 IU/ml) and large amounts of -1,4-xylanxylanohydrolase (50 IU/ml) at 40°C. A better production of both enzymes was observed when xylan instead of cellulose was used as substrate.The stability of the enzyme was found to be significantly greater than those of the cellulases and xylanases produced by other streptomycetes. The optimal incubation temperatures for the enzyme assays were 55°C and 60°C for CM-cellulase and xylanase respectively and optimal pH values were found in the range of pH 6–7.  相似文献   

20.
Various nitrogen and carbon sources were examined as inducers of the production of endoxylanase and -xylosidase by Trametes trogii. T. trogii grown on xylan plus crystalline cellulose provided supernatants with the highest enzymatic activities. Organic nitrogen sources (especially asparagine and casamino acids) were the best for enzyme production. The increase in xylan concentration stimulated endoxylanase production whereas significant differences were not attained in -xylosidase production with more than 5g xylan/l in the culture medium. pH 4.0 was optimal for endoxylanase production, while -xylosidase production was maximum at pH 5.5. Temperatures in the range of 23–28°C stimulated enzyme production. The endoxylanase activity in the crude culture filtrate was greatest at 50°C and pH around 5.0. The optimum pH and temperature for -xylosidase activity were 5.5 and 50°C respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号