首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY. 1 Eighteen streams in mid-Wales were sampled for macro-invertebrates in both riffles and margins in April 1985–87. Stream macro-flora, substrata and marginal habitats were surveyed in May 1988.
2. TWINSPAN classification of the macroinvertebrate data indicated three major stream groups. One was distinguished by circumneutral pH and had a flora and fauna typical of such conditions. The other two groups consisted of acidic streams with moorland and conifer afforested catchments respectively. The forest streams were the more acidic but the two groups also differed significantly in the composition of their marginal habitats.
3 The acidic moorland streams had more vegetation ('soft' features) in the margins and supported several invertebrate taxa which were relative more abundant there than in the riffles. These taxa may be excluded from forest streams because the margins are 'hard' due to greater erosiveness and shading.
4. In view of the increasing cover by conifer afforestation in Britain, it is clearly necessary to elucidate all its effects on stream ecosystems, which include changes to the physical environment.  相似文献   

2.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

3.
SUMMARY 1. We describe a preliminary approacb to modelling the impact of acidification on the ecology of two Welsb streams. Output from the hydrochemical Model of Acidification of Groundwaters in Catchments (MAGIC) was used to drive empirical models which predicted brown trout Salmo trulta (L.) survival, trout density and invertebrate assemblage type. The models were used for hindcasts between 1844 and 1984 under conifer forest and moorland conditions. Forecasts involved each of these land uses with sulphate deposition either continued at 1984 levels or reduced by 50%.
2. Trout survival times and trout densities in the models declined markedly between 1844 and 1984. The most severe decline occurred under simulated forest, where high aluminium concentration led to the virtual elimination of trout in both streams.
3. In forecasts, only in simulated moorland with sulphate deposition reduced by 50% of 1984 levels, was further decline in trout population retarded. There was no marked recovery in trout density under any of the conditions examined.
4. Invertebrate assemblages in streams during the nineteenth century may have differed from those now existing in nearby moorland streams which are presently circumneutral. Past chemical conditions were unusual (<3mg 1−1 total hardness, but pH >5.7 and low aluminium) by present-day standards, and were outside the range of the invertebrate model until -1940.
5. Between the 1940s and 1984 there was no change in invertebrate fauna under the moorland scenario despite some acidification. However, simulated forest advanced the appearance of the most impoverished assemblage type, which did not recover in spite of reduced deposition.
6. We discuss several uncertainties with the models in their present form, but suggest some methods for their testing and validation.  相似文献   

4.
SUMMARY. 1. The life cycle of a predatory insect, Protohermes grandis (Megaloptera: Corydalidae), was compared in four streams in central Japan. The effects of annual temperature regime and prey availability on life history characteristics were also assessed.
2. The larval period was 2 years and small adults emerged in the Morito River, where summer water temperature was high and large prey scarce.
3. In the Nagura River, rich in large prey, the larval period was also 2 years in spite of slightly lower temperature, and the adult size was largest among the streams.
4. In Anado Fork with a low summer temperature, the larval development took 3 years, and large adults emerged. Large prey were abundant in this stream.
5. Seasonal abundance of large prey also affected the time large larvae left the stream to pupate. Larvae emigrated earlier in streams where the density of large prey sharply decreased after spring, than in streams where large prey were available throughout the year.  相似文献   

5.
This research aimed to assess whether stream temperature and the size of Baetis rhodani larvae (Insecta: Ephemeroptera) differed between sites with contrasting riparian vegetation cover. Stream temperatures and Baetis sizes were monitored at sites along a 5-km section of a small (30 km2) upland Scottish stream. Some sites had riparian tree cover dominated by mature broadleaved woodland, while others were located in areas of open Calluna moorland. The 13 month data period included two contrasting summers, one typical for the region and the other unusually warm. Daytime water temperatures were generally highest at the open moorland sites. The difference between moorland and broadleaved woodland sites was most apparent in the summer months, with the woodland shading apparently acting to reduce maximum temperatures and mediate temporal fluctuations. Size data suggest that Baetis has a bivoltine life-cycle in the stream. Significant differences in the mean size of Baetis were found between moorland and woodland sites, with differences occurring primarily during the summer months. Mean size of Baetis was significantly greater in the moorland during the time of summer adult emergence. During the months that followed (growth of the next generation), Baetis larvae in the woodland sites were significantly larger. Size distribution data for the population suggest earlier adult emergence in the moorland section and different egg-to-larvae hatch times. Overall, the results indicate that subtle differences in growth and life cycles, linked to differences in riparian cover and streamwater temperature, can occur over short distances in upland streams.  相似文献   

6.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

7.
1. Modelling the effects of climate change on freshwater fishes requires robust field‐based estimates accounting for interactions among multiple factors. 2. We used data from an 8‐year individual‐based study of a wild brook trout (Salvelinus fontinalis) population to test the influence of water temperature on season‐specific growth in the context of variation in other environmental (i.e. season, stream flow) or biotic factors (local brook trout biomass density and fish age and size) in West Brook, a third‐order stream in western Massachusetts, U.S.A. 3. Changes in ambient temperature influenced individual growth rates. In general, higher temperatures were associated with higher growth rates in winter and spring and lower growth rates in summer and autumn. However, the effect of temperature on growth was strongly context‐dependent, differing in both magnitude and direction as a function of season, stream flow and fish biomass density. 4. We found that stream flow and temperature had strong and complex interactive effects on trout growth. At the coldest temperatures (in winter), high stream flows were associated with reduced trout growth rates. During spring and autumn and in typical summers (when water temperatures were close to growth optima), higher flows were associated with increased growth rates. In addition, the effect of flow at a given temperature (the flow‐temperature interaction) differed among seasons. 5. Trout density negatively affected growth rate and had strong interactions with temperature in two of four seasons (i.e. spring and summer) with greater negative effects at high temperatures. 6. Our study provided robust, integrative field‐based estimates of the effects of temperature on growth rates for a species which serves as a model organism for cold‐water adapted ectotherms facing the consequences of environmental change. Results of the study strongly suggest that failure to derive season‐specific estimates, or to explicitly consider interactions with flow regime and fish density, will seriously compromise our ability to predict the effects of climate change on stream fish growth rates. Further, the concordance we found between empirical observations and likely energetic mechanisms suggests that our general results should be relevant at broader spatial and temporal scales.  相似文献   

8.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

9.
SUMMARY. 1. Spatial and temporal changes in functional organization of the invertebrate community of streams of the northern jarrah forest, Western Australia, were examined in the light of predictions of the river continuum concept (Vannote et al. , 1980).
2. The composition of the fauna was largely as predicted for forested headwater streams with detritivores, principally collectors, dominating the fauna. Although shredders are generally considered to be codominant in such streams, they were not abundant in the riffle areas sampled in this study.
3. Some of the observed temporal changes in the composition of functional feeding groups were in agreement with those predicted by the generalized model. The abundance and richness of collectors were higher during the summer than winter, whereas the converse was true for filterers. This corresponded to the presumed availability of deposit and suspended fine-particulate organic matter during summer and winter respectively. Scrapers and predators showed no consistent temporal pattern among sites. However, the density of the latter was highly correlated with the density of other invertebrates, particularly collectors.
4. Temporal changes in the abundance and richness of shredders were not synchronized with the marked summer input of coarseparticulate organic matter. The possible reasons for this, and the role of shredders in Australian stream systems, are discussed.  相似文献   

10.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

11.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

12.
Climate change effects on some ecosystems are still poorly known, particularly where they interact with other climatic phenomena or stressors. We used data spanning 25 years (1981–2005) from temperate headwaters at Llyn Brianne (UK) to test three hypotheses: (1) stream macroinvertebrates vary with winter climate; (2) ecological effects attributable to directional climate change and the North Atlantic Oscillation (NAO) are distinguishable and (3) climatic effects on macroinvertebrates depend on whether streams are impacted by acidification. Positive (i.e. warmer, wetter) NAO phases were accompanied by reduced interannual stability (=similarity) in macroinvertebrate assemblage in all streams, but associated variations in composition occurred only in acid moorland. The NAO and directional climate change together explained 70% of interannual variation in temperature, but forest and moorland streams warmed respectively by 1.4 and 1.7°C (P<0.001) between 1981 and 2005 after accounting for NAO effects. Significant responses among macroinvertebrates were confined to circumneutral streams, where future thermal projections (+1, +2, +3°C) suggested considerable change. Spring macroinvertebrate abundance might decline by 21% for every 1°C rise. Although many core species could persist if temperature gain reached 3°C, 4–10 mostly scarce taxa (5–12% of the species pool) would risk local extinction. Temperature increase in Wales approaches this magnitude by the 2050s under the Hadley HadCM3 scenarios. These results support all three hypotheses and illustrate how headwater stream ecosystems are sensitive to climate change. Altered composition and abundance could affect conservation and ecological function, with the NAO compounding climate change effects during positive phases. We suggest that acidification, in impacted streams, overrides climatic effects on macroinvertebrates by simplifying assemblages and reducing richness. Climatic processes might, nevertheless, exacerbate acidification or offset biological recovery.  相似文献   

13.
Sugi (Cryptomeria japonica D. Don) is one of the most important evergreen coniferous plantation species in Japan. Much of the riparian forest that was originally dominated by deciduous broadleaf trees has been converted into sugi plantations. The present study investigated the seasonality of leaf-litter input and leaf dispersal to streams to assess the effects of converting riparian forest to sugi plantations. The seasonality of leaf-litter input was assessed at three streams in Nagoya University Forest. At one stream dominated by deciduous broadleaf trees, input was limited to autumn. At two streams in a sugi plantation, input was prolonged from autumn to early spring, and was dominated by sugi needles from winter to early spring. These results suggest that sugi plantations alter the seasonality of leaf-litter input from riparian forests and affect stream ecosystems. Leaf dispersal was assessed by considering the relationship between leaf dispersal distance from three forest layers to the stream and leaf-litter input into two streams. The maximum leaf dispersal distance was 26–28 m for deciduous broadleaf trees from mid-October to November and 10–12 m for sugi needles from December to April. Leaf dispersal distance depended on the tree species. Four species of deciduous broadleaf tree showed greater leaf dispersal than that of sugi. The mean weight of individual sugi needles was higher than that of the broadleaf trees’ leaves, and dispersal depended on strong winds in winter and early spring. Although the leaf dispersal distance from the understory was within 2–4 m, it could be a significant source of leaf-litter input to streams.  相似文献   

14.
SUMMARY 1. There is little information on the impacts of deforestation on the fish fauna in neotropical streams, and on parameters influencing species diversity and community structure of fish. We analysed these aspects in 12 stream sites in the Ecuadorian Amazon. The stream sites represented a large gradient in canopy cover and were located in an area of fragmented forest. While some streams had been deforested, they had not suffered gross degradation of the habitat.
2. The species richness of stream fish was not related to deforestation. Local fish diversity (Fisher's Alpha) was positively related to the surface area of stream pools (m2). Beta diversity was higher among forested than deforested sites, indicating greater heterogeneity in species composition among forested than deforested sites. The percentage of rare species was positively correlated with canopy cover.
3. Total fish density increased with deforestation, and the fish community changed from dominance by omnivorous and insectivorous Characiformes at forested sites to dominance of periphyton-feeding loricariids at deforested sites.
4. Multidimensional statistical analysis of fish community structure showed that six environmental variables (the area of stream bottom covered by leaves, relative pool area, particulate organic matter, mean depth, conductivity and suspended solids) were related to the ordination axes. The presence of leaves, which was strongly correlated to canopy cover, was the variable most closely related to fish community structure, while relative pool area was the second strongest variable. Thus, fish community structure was strongly affected by deforestation.  相似文献   

15.
To determine use of riparian habitats by birds in the northern coniferous forest of British Columbia, we censused birds and vegetation along 500 m transects placed parallel and perpendicular to three second-order streams. Censuses were conducted during spring, summer, autumn, and winter to investigate how use of riparian habitat changed seasonally. Stream-side riparian zones were characterized by a dense understorey of deciduous vegetation not found in the upslope forest. Nine bird species preferred the riparian understorey for breeding, six preferred it only during migration. Neotropical migrants (16 of 46 species) were more closely associated with stream-sides than year-round residents (11 species). Some breeding birds (five species) were significantly negatively associated with riparian habitats. The density of riparian birds declined with distance upstream but did not decline up to 250 m away from the stream. The more extensive riparian areas downstream supported a greater density of birds in all seasons compared to upstream areas, but more species only in spring and autumn. Species that nested in non-riparian areas in summer used riparian habitat in autumn, making riparian corridors in the northern coniferous forest important during migration. Maintaining both riparian and upslope habitats is necessary to preserve species diversity al the landscape level.  相似文献   

16.
1. A series of laboratory-based equations on trout growth and bioenergetics developed by J.M. Elliott were applied to data collected for brown trout ( Salmo trutta L.) under field conditions in Co. Mayo, Western Ireland. Fish were collected by electrofishing eight upland streams with contrasting riparian vegetation; grassland, open canopy and closed canopy deciduous.
2. Stream temperatures, one of the main influencing factors on fish growth and energetics, did not differ significantly between riparian types.
3. Observed growth rates were lower than the predicted maximum growth rates and were not influenced by riparian vegetation type. Growth ranged between 0.66% day−1 for 0 + trout to 0.08% day−1 for 2 + trout.
4. Production estimates showed no clear difference between riparian vegetation types over the growing season.
5. Fish densities and biomass tended to be greater in closed canopy streams particularly in summer.
6. Actual ration sizes calculated for trout were similar to the ration required for maintenance metabolism and were only 45–63% of the maximum potential rations. Although there was an ontogenetic increase in ration size with increasing fish age, the proportion of ration available for growth (i.e. the difference between actual and maintenance rations) did not differ between age classes but was greatest in summer. 1+ and 2+ trout show greatest ration available for growth in grassland streams.
7. Trout growth did not differ between riparian vegetation types but did vary seasonally with greatest attainment in summer. Growth was limited in the present study possibly due to combined effects of reduced prey available to fish and low stream temperatures reducing metabolic requirements. In such food limited systems, terrestrial invertebrate energy subsidies could have significant benefits to brown trout growth, production and bioenergetics.  相似文献   

17.
Synopsis The influence of late spring and summer water temperatures on brook charr, Salvelinus fontinalis, growth and age structure was evaluated from 1984 to 1991 in the Ford River, Michigan. Temperature was monitored and brook charr sampled for vital statistics from late May through September using fyke nets and weirs at four locations within a 25.8 km section of stream. Scale analysis was used to determine captured brook charr age, past length at age and relative annual growth rates. Late spring and summer water temperature patterns varied between years with the greatest variability occurring in May and June. Age and size structure also varied between years and was significantly related to temperature. Years with cooler late spring and summer temperature patterns were dominated by older (age 2 and 3), larger brook charr, while years with warmer spring and summer temperature patterns were dominated by younger (age 1), smaller brook charr. Spring and summer temperature did not appear to have a significant effect on the growth of age 0 or age 1 brook charr. However, temperature was negatively related to brook charr growth from age 2 on. As spring and summer water temperatures are critical to brook charr growth and survival, it is important that a streams thermal regime be considered when establishing management goals for this species.  相似文献   

18.
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six‐year study showed that the proportion of fish migrating was positively related to lake temperature during the pre‐migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto‐ and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.  相似文献   

19.
In this study we examined the germination ecology with special reference to the temperature requirements for embryo development and germination of Corydalis cava subsp. cava, under both outdoor and laboratory conditions. Corydalis cava is a spring flowering woodland tuberous geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, was investigated in a population growing in northern Italy. Immediately after harvest, seeds of C. cava were sown both in the laboratory under simulated seasonal temperatures and naturally. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions, culminating in radicle emergence in winter, when temperatures fell to ca 5°C. Cotyledon emergence also occurred at ca 5°C, but first emergence was delayed until late winter and early spring. Laboratory experiments showed that high (summer) followed by medium (autumn) and low temperatures (winter) are needed for physiological dormancy loss, embryo development and germination respectively. Unlike seeds of C. cava that germinated in winter, in other Corydalis species radicle emergence occurred in autumn (C. flavula) or did not depend on a period of high summer temperature to break dormancy (C. solida). Our results suggest that subtle differences in dormancy and germination behavior between Corydalis species could be related to differences in their geographical distribution.  相似文献   

20.
Anthropogenic modification of small stream habitats insouthern Ontario has occurred with little concern forindigenous, non-game fish communities. The combinedeffects of urbanization, impoundment, and agricultureon the fish communities of three small streams, fromheadwaters to near-confluence locations, wereevaluated by comparing current fish communitystructure to historical records (species lists)collected over the last quarter century. Comparisonsusing cluster analysis showed that spatial andtemporal shifts in fish community composition did notoccur immediately after stream modifications but tookup to 10 years. Replacement of common species byformerly rare or absent species was evident in twostreams subjected to urbanization and impoundment;stream sections subjected to primarily agriculture land usedemonstrated minimal change during this study period. Urban zones and sections downstream of impoundmentswere dominated by species tolerant of controlledflows, siltation, channelization, homogenous spawningsubstrates, and elevated temperatures. Barrier-freeheadwater and agriculture zones with abundant riparianvegetation supported communities that were intolerantof controlled flows, dependent on lower summer watertemperatures, and require high dissolved oxygenlevels. Greater understanding of the causative forcesshaping fish communities can be used to facilitateintegration of greater biological realism into anyfuture conservation or restoration programs inanthropogenically-modified streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号