首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly-L -lysine exists as an α-helix at high pH and a random coil at neutral pH. When the α-helix is heated above 27°C, the macromolecule undergoes a conformational transition to a β-sheet. In this study, the stability of the secondary structure of poly-L -lysine in solutions subjected to shear flow, at temperatures below the α-helix to β-sheet transition temperature, were examined using Raman spectroscopy and CD. Solutions initially in the α-helical state showed time-dependent increases in viscosity with shearing, rising as much as an order of magnitude. Visual observation and turbidity measurements showed the formation of a gel-like phase under flow. Laser Raman measurements demonstrated the presence of small amounts of β-sheet structure evidenced by the amide I band at 1666 cm−1. CD measurements indicated that solutions of predominantly α-helical conformation at 20°C transformed into 85% α-helix and 15% β-sheet after being sheared for 20 min. However, on continued shearing the content of β-sheet conformation decreased. The observed phenomena were explained in terms of a “zipping-up” molecular model based on flow enhanced hydrophobic interactions similar to that observed in gel-forming flexible polymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 239–246, 1998  相似文献   

2.
Poly(L -tyrosine) is a random coil in dimethyl sulfoxide. Upon addition of dichloroacetic acid, poly(L -tyrosine) undergoes a conformational transition centered at about 10% dichloroacetic acid. The transition is nearly complete at 20% dichloroacetic acid. Further addition of dichloroacetic acid leads to precipitation of poly(L -tyrosine). We have characterized this transition by optical rotation, viscosity, circular dichroism, and infrared. The optical rotation at 350 nm and the intrinsic viscosity increase sharply to values that are consistent with a transition to the α-helix conformation. The circular dichroism of poly(L -tyrosine) in dimethyl sulfoxide and in dimethyl sulfoxide/dichloroacetic acid (80:20 v/v) agrees with previous reports for random-coil and α-helix conformations, respectively. The infrared spectrum of poly(L -tyrosine) in dimethyl sulfoxide/dichloroacetic acid (80:20 v/v) shows no evidence of β-structure. We conclude that the transition on going from dimethyl sulfoxide to 20% dichloroacetic acid in dimethyl sulfoxide is a coil → α-helix transition. The amide-I band of poly(L -tyrosine) in dimethyl sulfoxide/dichloroacetic acid (80:20) is found to be at 1662 cm?1. It has been suggested that this high frequency may be indicative of a left-handed α-helix. However, this high amide-I frequency is consistent with conformational energy calculations of Scheraga and co-workers. The mechanism of the dichloroacetic acid-induced transition to an α-helix is discussed. Dichloroacetic acid and dimethyl sulfoxide interact strongly and the transition presumably involves a marked decrease in the ability of dimethyl sulfoxide to solvate the peptide backbone and aromatic side chains upon complex formation with dichloroacetic acid.  相似文献   

3.
Nature of amino acid side chain and alpha-helix stability.   总被引:1,自引:0,他引:1  
In order to investigate the ability of neutral amino acids to support the α-helix conformation, the coil–helix transition of poly(L -lysine) and of lysine copolymers with these amino acids was studied in water/methanol using circular dichroism. The transtions were recorded at constant pH adding buffer to the methanol/water mixtures. With poly(L -lysine), experiments were performed at several constant pH's; the transition midpoint on the water (methanol) concentration scale was found to depend strongly upon pH; the helix stability region is shifted towards higher water concentrations, when the pH is increased. Copolymers of lysine and several neutral amino acids revealed the same effect in that increasing amounts of, for example, norleucine also shifted the transition midpoint to higher water concentrations. A series of copolymers containing L -lysine as the host and different hydrophobic amino acids were synthesized and the helix–coil transition in water/methanol was observed at constant pH. Different copolymers of equal composition showed significant differences with respect to the nature of the amino acid incorporated into polylysine. From these studies an α-helix-philic scale (in decreasing order): Leu, Nle, Ile, Ala, Phe, Val, Gly is deduced and discussed; the results obtained were compared with those of different procedures.  相似文献   

4.
In carbonate buffer at pH 10.5, a transparent solution of poly(L -lysine HBr) was obtained up to fairly high concentration of 3 g/dl at room temperature. The hydrodynamic behavior of the solution has been studied by sedimentation analyses and viscosity measurements. A dimer form for high concentrations and a monomer form for low concentrations were inferred. The dimer and monomer forms were assigned to a β-structure and α-helix, respectively, based on the CD and optical rotary dispersion spectra. Using CD spectroscopy, a reversible transition between α-helix and β-structure was observed as a function of either poly(L -lysine HBr) concentration or temperature. An aggregated form which was assigned to the antiparallel pleated sheet appeared at 50°C on the basis of its ir spectrum.  相似文献   

5.
Prion diseases are associated with misfolding of the natively α-helical prion protein into isoforms that are rich in cross β-structure. However, both the mechanism by which pathological conformations are produced and their structural properties remain unclear. Using a combination of nuclear magnetic resonance spectroscopy, computation, hydroxyl radical probing combined with mass-spectrometry and site-directed mutagenesis, we showed that prion stop mutants that accumulate in amyloidogenic plaque-forming aggregates fold into a β-helix. The polymorphic residue 129 is located in the hydrophobic core of the β-helix in line with a critical role of the 129 region in the packing of protein chains into prion particles. Together with electron microscopy our data support a trimeric left-handed β-helix model in which the trimer interface is formed by residues L125, Y128 and L130. Different prion types or strains might be related to different aggregate structures or filament assemblies.  相似文献   

6.
Conformational transitions of alternating copoly(l-leucyl-l-lysine) and copoly(l-leucyl-l-ornithine) in organic solvents and in alcohol-water mixtures were determined by c.d. measurements and the results compared with those from random copoly(Leu48.3, Lys51.7). As reported previously16,17, in salt-free water these alternating copolymers undergo a conformational transition from a disordered to β-structure when the pH is raised or when various salts are added, whereas random copolymers adopt an α-helix conformation under similar conditions. However, both alternating copolymers reveal a tendency to form α-helix in 2,2,2-trifluoroethanol and in alcohol-water mixtures at neutral pH, as does the random copolymer. The alcohol concentration at which the α-helix can be induced is dependent on the kind of alcohol, the α-helix promoting power follows the the series: 2,2,2-trifluoroethanol > isopropanol > ethanol > methanol. In addition, these alternating copolymers in methanol-water mixtures below 50% (by volume) methanol form the β-structure when the pH is raised. On the other hand, above 60% methanol the fraction of α-helix already formed at neutral pH is enhanced at higher pH-values.  相似文献   

7.
D Pederson  D Gabriel  J Hermans 《Biopolymers》1971,10(11):2133-2145
We have performed potentiometric titrations of poly-L -lysine. From these data we have calculated the free energy and enthalpy changes for the folding of the random coil to the α-helix in 10% ethanol (?120 and ?120 cal/mole) and from the random coil to the β-structure in water (?140 and 870 cal/mole) and in 10% ethanol (?180 and 980 cal mole). Comparison of these values with each other and with values for the coil → α- helix transition in water (?78 and ?880 cal/mole) led to the following conclusions. The stabilization by ethanol of ethanol of the α-helix with respect to the coil is that predicted from the known free energy of transfer of the peptide group from water to 10% ethanol. Similar data to explain the enthalpy difference are not available. The thermodynamic functions for the transition from α-helix to β-structure, obtained by subtracting those for the coil → α-helix and coil → β-structure transitions, are explained from a consideration of the structural differences: non bonded interactions of the polypeptide backbone are less favorable in the β-structure than in the α-helix, causing an increase in the energy, while hydrophobic contacts between side chains raise the entropy of the β-structure as compared with the α-helix, so that the free energy difference between the two structures is small, but enthalpy and entropy differences are large. The observation of only small differences in the free energy and enthalpy changes for the transition from coil β-structure upon going from water to 10% ethanol is expected by considering both the free energy of transfer of the peptide group (as for the α-helix) and the free energy and enthalpy of transfer of the apolar part of the side chain involved in hydrophobic bond formation.  相似文献   

8.
H Noguchi  J T Yang 《Biopolymers》1971,10(12):2569-2579
The volume increment per amino acid residue for the α-helix to β-form transition of uncharged poly-L -lysine in aqueous solution was 3.8 ml in water and 4.3 ml in 0.2M and 1M NaBr solutions at 26°C, respectively. The sound velocity of the polymer solution was greater with the β-helix than with the β-form, but the difference was less in dilute salt solutions and disappeared in 1 or 2M NaBr solution. Thus, the β poly-L -lysine solution was slightly more compressible than the α-polymer solution, but this difference was diminished with increasing salt concentration. Both the volume change and the change in adiabatic compressibility of the polymer solution suggest that hydrophobic interactions among the lysyl groups in the β-form reduce the amount of “icebergs” surrounding the polymer molecules as compared with the amount originally present with the α-helix. The coil-to-helix transition of poly-L -glutamic acid in aqueous solution was also accompanied by a decrease in sound velocity. This can be attributed to the reduction of the water of hydration which is less compressible than free water.  相似文献   

9.
Hayward S  Milner-White EJ 《Proteins》2011,79(11):3193-3207
α-sheet has been proposed to be the main constituent of the toxic amyloid intermediate. Molecular dynamics simulations on proteins known to be involved in amyloid diseases have demonstrated that β-sheet can, under certain conditions, spontaneously convert to α-sheet via ββ→α(R)α(L) peptide-plane flipping. Using torsion-angle driving to simulate this flip the transition has been investigated for parallel and antiparallel sheets. Concerted and sequential flipping processes were simulated, the former allowing direct calculation of helical parameters. For antiparallel sheet, the strands tend to splay apart during the transition. This can be understood by consideration of the geometry of repeating dipeptide conformations. At the end of the transition antiparallel α-sheet is slightly twisted, comprising gently curving strands. In parallel sheet, the strands maintain identical conformations and stay hydrogen bonded during the transition as they curl up to suggest a hitherto unseen structure, the multi-helix α-nanotube. Intriguingly, the α-nanotube has some of the characteristics of the parallel β-helix, a single-helix structure also implicated in amyloid. Unlike the β-helix, α-nanotube formation could involve identical strands aligning with each other in register as in most amyloids.  相似文献   

10.
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an α-helix stretch (residues 5–12). This α-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an α-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the α-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an α-helix running from residues 5 to 12, two antiparallel stretches of β-sheet (residues 15–20 and 23–27) connected by a type I′ β-turn, and three disulfide bridges connecting the α-helix to the β-sheet.  相似文献   

11.
The solution characterization of poly(Lys-Ala-Glu) is described. This polytripeptide is zwitterionic at neutral pH and is shown to take on a conformation which is dictated by the state of ionization, molecular weight, temperature, and solvent. The polypeptide is almost entirely α-helical at low pH and temperature for polymers of greater than 25,000 molecular weight. Melting profiles for these conditions show tm ~ 20°C. Analysis of circular dichroism curves shows the α-helical content to vary in a linear manner with molecular weight in the range 3000–30,000. At neutral pH the charged polypeptide is essentially random, but substantial α-helix could be induced by addition of methanol or trifluoroethanol. At temperatures where the sequential polypeptide is a random coil, addition of trifluoroethanol produces a polymer which is mostly α-helical but also contains an appreciable ammount of β-structure. The infrared spectrum of a low-molecular-weight fraction assumed to be cyclo(Lys-Ala-Glu)2 was tentatively assigned a β-pleated sheet structure. A comparison of this polytripeptide in various ionization states with other polytripeptides containing L -alanine and L -glutamate or L -lysine shows the α-helix directing properties for the (uncharged) residues to lie in the order Ala > Glu > Lys.  相似文献   

12.
Copolymers of L -lysine and L -isoleucine [poly(L -Lysf,L -Val1 ? f)] containing 4–15% isoleucine were investigated using potentiometric titration and circular dichroism (CD) spectroscopy. With increasing isoleucine content, β-sheet formation is favored over α-helix formation at high pH and room temperature. The fraction of β-sheet present, as a function of pH, calculated from titrations of poly(L -Lys85.2,L -Ile14.8), agreed well with data obtained from CD studies for the same copolymer. Thermodynamic parameters were determined from titrations using the method of Zimm and Rice; the partial free energy (ΔG°C → β) at 25° for the coil-to-β-sheet transition for isoleucine was estimated to be ?515 cal/mol; from the temperature dependence of free energy, the partial entropy (ΔS°cβ), and the partial free enthalpy (ΔH°c → β) of the coil → β transition for isoleucine is estimated to be 2.6 e.u. and 260 cal/mol, respectively. The partial thermodynamic parameters obtained for lysine are in good agreement with literature values. It is concluded from these studies that isoleucine has a very high potential for a β-sheet formation.  相似文献   

13.
M Hatano  M Yoneyama  Y Sato 《Biopolymers》1973,12(4):895-903
Interaction of poly-α,L -glutamic acid (PGLA) with acridine orange (AO) was studied with circular dichroism and absorption spectra measurements. The following results were observed: (1) the addition of a comparable amount of AO with the glutamyl residue to the PLGA solution at pH of 4.5 reduced the fraction of helix of the polymer; (2) when AO was added to the PGLA solution, the pH range of the helix-coil transition of the polymer shifted toward higher pH regions; and (3) when the mixture of the same amount of AO and the glutamyl residue was brought to the neutral and alkaline pH region, some induced circular dichroism bands were observed. In this case, it was assumed that PLGA in the system takes a helical form due to the neutralization of the anionized side chains by the cationic species of AO. We concluded that AO molecules bound to the carboxylate groups of the side chains of PLGA arrange to from a righthanded super-helix which surrounds the core of the righthanded α-helix of PLGA.  相似文献   

14.
A synthetic copolymer of L -glutamic acid and L -tyrosine (23:1) with molecular weight 17,000 was examined conformationally as a function of pH, using circular dichroism, difference spectrophotometry, fluorescence, potentiometic titration, and high-resolution nuclear magnetic resonance (220 MHz). A water-dioxan mixture (2:1) was used to avoid complications due to aggregation (which was shown by infrared spectroscopy to lead to the formation of β-structures). In the α-helical form the tyrosine residues generate a sizeable negative Cotton effect in the near ultraviolet; this is a consequence of perturbation of the chromophores by the helix, and not of tyrosine-tyrosine interactions, which are known to give rise in the right-handed α-helical state to positive Cotton effects. The pH profile of this Cotton effect is different from that of the peptide Cotton effects, which reflect the helix-random coil equilibrium. The data are interpreted in terms of preferential breakdown of the α-helix in the neighborhood of the tyrosine residues. An ultraviolet difference spectrum in the tyrosine absorption bands is generated at the low pH extreme of the conformational transition, the absorbance change being largely complete at a pH at which the other optical parameters have only begun to change. A possible explanation is the formation of a hydrogen bond between the phenolic hydroxyl and a carboxylate, the pK of which is lowered by the hydrogen bonding. An alternative explanation is the freezing of side-chain rotations at a pH below the onset of the helix-random coil transition, when the degree of side chain ionization approaches zero. Some support for the latter scheme comes from the splitting of side-chain methylene proton resonances, indicating partial immobilization, as well as small changes in chemical shift of tyrosine ring protons in the pH (or pD) region in which the difference spectrum appears.  相似文献   

15.
The hexapeptide Ser-Gly-Ala-Gly-Lys-Thr has been synthesized and characterized. It was designed as a minimal soluble peptide that would be likely to have the phosphate-binding properties observed in the P-loops of proteins that bind the β-phosphate of GTP or ATP. The β-phosphate in such proteins is bound by a combination of the side chain ε-amino group of the lysine residue plus the concavity formed by successive main chain peptide NH groups called a nest, which is favored by the glycines. The hexapeptide is shown to bind HPO(4) (2-) strongly at neutral pH. The affinities of the various ionized species of phosphate and hexapeptide are analyzed, showing that they increase with pH. It is likely the main chain NH groups of the hexapeptide bind phosphate in much the same way as the corresponding P-loop atoms bind the phosphate ligand in proteins. Most proteinaceous P-loops are situated at the N-termini of α-helices, and this observation has frequently been considered a key aspect of these binding sites. Such a hexapeptide in isolation seems unlikely to form an α-helix, an expectation in accord with the CD spectra examined; this suggests that being at the N-terminus of an α-helix is not essential for phosphate binding. An unexpected finding about the hexapeptide-HPO(4) (2-) complex is that the side chain ε-amino group of the lysine occurs in its deprotonated form, which appears to bind HPO(4) (2-) via an N···H-O-P hydrogen bond.  相似文献   

16.
P Y Chou  H A Scheraga 《Biopolymers》1971,10(4):657-680
The heat ΔH° for converting an uncharged lysine residue from a coil to an α-helical state in poly-L -lysine in 0.1N KCl has been determined calorimetrically to be ?1200 cal/mole at both 15°C and 25°C. Essentially the same value has been obtained for the conversion of an uncharged residue from a coil to a β-pleated sheet state. Titration data provided information about the state of charge of the polymer in the calorimetric experiments, and optical rotatory dispersion data about its conformation. In order to compute ΔH°, the observed Calorimetric heat was corrected for the heat of breaking the sample cell, the heal of dilution of HCl, the heat of neutralization of OH? ion, and the heat of ionization of the ε-amino group in the random coil. The latter was obtained from similar Calorimetric measurements on poly-D ,L -lysine, which was shown to be a good model for the random coil form of poly-L -lysine. The measured transition heat was ~0.7 cal., which is only 7% of the total heat liberated when a 40 ml solution of 0.25% w/v poly-L -lysine is brought, from pH 11 to pH 7; nevertheless it could be determined with a precision of ±8%. The conformation of poly-L -lysine at pH 11 appears to be completely helical at 15°C, but a mixture of 90% α-helix, 5% β form, and 5% coil at 25°C. Since ΔH° ~ 0 for the α ? β conversion, the polymer behaves like one of 95% α-helix and 5% coil in the calorimeter at 25°C. At neutral pH, poly-L -lysine is an extended coil, like poly-D ,L -lysine.  相似文献   

17.
To elucidate the structural characteristics of alcohol-denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra of six proteins-myoglobin, human serum albumin, α-lactalbumin, thioredoxin, β-lactoglobulin, and α-chymotrypsinogen A-down to 170 nm in trifluoroethanol solutions (TFE: 0-50%) and down to 175 nm in methanol solutions (MeOH: 0-70%) at pH 2.0 and 25°C, using a synchrotron-radiation VUVCD spectrophotometer. The contents of α-helices, β-strands, turns, poly-L-proline type II helices (PPIIs), and unordered structures of these proteins were estimated using the SELCON3 program, including the numbers of α-helix and β-strand segments. Furthermore, the positions of α-helices and β-strands on amino acid sequences were predicted by combining these secondary-structure data with a neural-network method. All alcohol-denatured proteins showed higher α-helix contents (up to ~ 90%) compared with the native states, and they consisted of several long helical segments. The helix-forming ability was higher in TFE than in MeOH, whereas small amounts of β-strands without sheets were formed in the MeOH solution. The produced α-helices were transformed dominantly from the β-strands and unordered structures, and slightly from the turns. The content and mean length of α-helix segments decreased as the number of disulfide bonds in the proteins increased, suggesting that disulfide bonds suppress helix formation by alcohols. These results demonstrate that alcohol-denatured proteins constitute an ensemble of many long α-helices, a few β-strands and PPIIs, turns, and unordered structures, depending on the types of proteins and alcohols involved.  相似文献   

18.
Sequential polypeptides (L -Arg-X-Gly)n were prepared as synthetic models of arginine-rich histones to study their structure and their stereospecific interactions with DNA. In our previous work the conformational characteristics of poly(L -Arg-L -Ala-Gly), poly(L -Arg-L -Val-Gly), and poly(L -Arg-L -Leu-Gly) have already been analyzed. To obtain further insight into the influence of the X residue side chain on the conformation of the (L -Arg-X-Gly)n polytripeptides, we now report their synthesis and cd properties when X represents the amino acid residues Ile, Nva, and Nle. The pentachlorophenyl active esters of the appropriate tripeptides were used to perform the polymerization, and the toluene-4-sulfonyl group was used to protect the arginine guanido group. CD spectroscopy showed that, in 100% trifluoroethanol, the degree of helical conformation increased in the order Ile → Nle → Nva. An equilibrium between β-turn, α-helix, and random-coil conformers occurred in 100% hexafluoroisopropyl alcohol, while a rise in the temperature or the addition of water favored the α-helix, the highest percentage of which was observed in a mixture of hexafluoroisopropyl alcohol: water (20 : 80) and in the order Ile → Nle → Nva. In aqueous solutions (at pH 7 and 12) the polymers behaved as a random coil, but they were forced to a less aperiodic structure, over a range of ionic strengths (0–0.5M NaF). A rise in temperature of up to 70°C in 100% trifluoroethanol resulted in a decrease of the α-helix percentage of the polymers, while in aqueous solutions the aperiodic structure decreased with increasing temperature. This study proved the importance of the nature of the X residue (length, Cβ branching) in relation to the structural order of the sequential polypeptides. We concluded that the polymers prepared are suitable models for arginine-rich histones.  相似文献   

19.
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases related to the structure transition of α-helix into β-sheet. In order to gain more direct insight into the molecular basis of the disease, the stability of the wild-type human prion protein (hPrPc) and the R220K mutant (m-hPrPc) was studied by molecular dynamics (MD) and flow MD simulation. Both the thermodynamic stability and the mechanical properties of hPrPc were investigated in this work. It was found that β-sheet was more readily to be unfolded in m-hPrPc. In the case of hPrPc, less content of helix was preserved after water turbulence. The H-bond network formed by the mutation-related residue 220 was found to play a key role in the stability of hPrPc.  相似文献   

20.
13C-nmr spectra of poly(β-benzyl L-aspartate) containing 13C-enriched [3-13C]L -alanine residues in the solid state were recorded by the cross polarization–magic angle spinning method, in order to elucidate the conformation-dependent 13C chemical shifts of L -alanine residues taking various conformations such as the antiparallel β-sheet, the right-handed α-helix, the left-handed α-helix, and the left-handed ω-helix forms obtained by appropriate treatment. The latter two conformations for L -alanine residues are achieved when L -alanine residues are incorporated into poly(β-benzyl L -aspartate). We found that the alanine Cβ carbon show significant 13C chemical shift displacement depending on conformational change, and gave the 13C chemical shift values at about 17 ppm for the left-handed ω-helix, 14 ppm for the left-handed α-helix, 15.5 ppm for the right-handed α-helix, and 21.0 ppm for the antiparallel β-sheet relative to tetramethylsilane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号