首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic Cutlassfish, Trichiurus lepturus, have large, barbed, premaxillary and dentary fangs, and sharp dagger-shaped teeth in their oral jaws. Functional teeth firmly ankylose to the dentigerous bones. We used dry skeletons, histology, SEM, and micro-CT scanning to study 92 specimens of T. lepturus from the western North Atlantic to describe its dentition and tooth replacement. We identified three modes of intraosseous tooth replacement in T. lepturus depending on the location of the tooth in the jaw. Mode 1 relates to replacement of premaxillary fangs, in which new tooth germs enter the lingual surface of the premaxilla, develop horizontally, and rotate into position. We suggest that growth of large fangs in the premaxilla is accommodated by this horizontal development. Mode 2 occurs for dentary fangs: new tooth germs enter the labial surface of the dentary, develop vertically, and erupt into position. Mode 3 describes replacement of lateral teeth, in which new tooth germs enter a trench along the crest of the dentigerous bone, develop vertically, and erupt into position. Such distinct modes of tooth replacement in a teleostean species are unknown. We compared modes of replacement in T. lepturus to 20 species of scombroids to explore the phylogenetic distribution of these three replacement modes. Alternate tooth replacement (in which new teeth erupt between two functional teeth), ankylosis, and intraosseous tooth development are plesiomorphic to Bluefish + other Scombroidei. Our study highlights the complexity and variability of intraosseous tooth replacement. Within tooth replacement systems, key variables include sites of formation of tooth germs, points of entry of tooth germs into dentigerous bones, coupling of tooth germ migration and bone erosion, whether teeth develop horizontally or immediately beneath the tooth to be replaced, and how tooth eruption and ankylosis occur. Developmentally different tooth replacement processes can yield remarkably similar dentitions.  相似文献   

2.
This study was undertaken as a prerequisite to investigations on tooth differentiation in a squamate, the Canarian scincid Chalcides. Our main goal was to determine whether the pattern of tooth replacement, known to be regular in lizards, could be helpful to predict accurately any stage of tooth development. A growth series of 20 laboratory-reared specimens, aged from 0.5 month after birth to about 6 years, was used. The dentition (functional and replacement teeth) was studied from radiographs of jaw quadrants. The number of tooth positions, the tooth number in relation to age and to seasons, and the size of the replacement teeth were recorded. In Chalcides, a single row of pleurodont functional teeth lies at the labial margin of the dentary, premaxillary, and maxillary. Whatever the age of the specimens, 16 tooth positions were recorded, on average, in each quadrant, suggesting that positions are maintained throughout life. Replacement teeth were numerous whatever the age and season, while the number of functional teeth was subject to variation. Symmetry of tooth development was evaluated by comparing teeth two by two from the opposite side in the four jaw quadrants of several specimens. Although the relative size of some replacement teeth fitted perfectly, the symmetry criterion was not reliable to predict the developmental stage of the opposite tooth, whether the pair of teeth compared was left-right or upper-lower. The best fit was found when comparing the size of successive replacement teeth from the front to the back of the jaw. Every replacement tooth that is 40-80% of its definitive size is followed, in the next position on the arcade, by a tooth that is, on average, 20% less developed. Considering teeth in alternate positions (even and odd series), each replacement tooth was a little more developed than the previous, more anterior, one (0.5-20% when the teeth are from 10-40% of their final size). The latter pattern showed that tooth replacement occurred in alternate positions from back to front, forming more or less regular rows (i.e., "Zahnreihen"). In Chalcides, the developmental stage of a replacement tooth in a position p can be accurately predicted provided the developmental stage of the replacement tooth in position p-1 or, to a lesser degree, in position p-2 is known. This finding will be particularly helpful when starting our structural and ultrastructural studies of tooth differentiation in this lizard.  相似文献   

3.
The developmental cycle of the teeth in Plethodon cinereus is analyzed on morphological grounds using alizarin preparations. All the stages in development do not occupy the same proportion of the life cycle time. Functional teeth and germs at an early stage in development occupy a large proportion of the life cycle time, whereas the processes of tooth shedding and ankylosis occur very quickly. The time during which any locus does not bear a functional tooth, and is therefore a non-functional locus, is reduced to a minimum. P. cinereus has a basic pattern of tooth replacement which is consistent with Zahnreihen which are 2.0 tooth spaces apart. Variations in the replacement pattern are common and these are produced by relatively small fluctuations in the spacing of the Zahnreihen around the ?mean? of 2.0. Localized disturbances which produce breaks in the replacement pattern and cause waves to cross also occur. These may be due to the failure of tooth germs to develop, the fusion of tooth germs, or may be the result of the inherent variability in a complex biological system. This variability causes individual tooth germs to develop too slowly or too quickly and hence assume an ?abnormal”? position thus causing breaks in the replacement pattern. Tooth replacement may be controlled by an intra-local mechanism(s) rather than by stimuli which travel along the jaw.  相似文献   

4.
Sicyopterus japonicus (Teleostei, Gobiidae) possesses a unique upper jaw dentition different from that known for any other teleosts. In the adults, many (up to 30) replacement teeth, from initiation to attachment, are arranged orderly in a semicircular-like strand within a capsule of connective tissue on the labial side of each premaxillary bone. We have applied histological, ultrastructural, and three-dimensional imaging from serial sections to obtain insights into the distribution and morphological features of the dental lamina in the upper jaw dentition of adult S. japonicus. The adult fish has numerous permanent dental laminae, each of which is an infolding of the oral epithelium at the labial side of the functional tooth and forms a thin plate-like structure with a wavy contour. All replacement teeth of a semicircular-like strand are connected to the plate-like dental lamina by the outer dental epithelium and form a tooth family; neighboring tooth families are completely separated from each other. The new tooth germ directly buds off from the ventro-labial margin of the dental lamina, whereas no distinct free end of the dental lamina is present, even adjacent to this region. Cell proliferation concentrated at the ventro-labial margin of the dental lamina suggests that this region is the site for repeated tooth initiation. During tooth development, the replacement tooth migrates along a semicircular-like strand and eventually erupts through the dental lamina into the oral epithelium at the labial side of the functional tooth. This unique thin plate-like permanent dental lamina and the semicircular-like strand of replacement teeth in the upper jaw dentition of adult S. japonicus probably evolved as a dental adaptation related to the rapid replacement of teeth dictated by the specialized feeding habit of this algae-scraping fish.  相似文献   

5.
Tooth replacement poses many questions about development, pattern formation, tooth attachment mechanisms, functional morphology and the evolution of vertebrate dentitions. Although most vertebrate species have polyphyodont dentitions, detailed knowledge of tooth structure and replacement is poor for most groups, particularly actinopterygians. We examined the oral dentition of the bluefish, Pomatomus saltatrix, a pelagic and coastal marine predator, using a sample of 50 individuals. The oral teeth are located on the dentary and premaxillary bones, and we scored each tooth locus in the dentary and premaxillary bones using a four-part functional classification: absent (A), incoming (I), functional (F=fully ankylosed) or eroding (E). The homodont oral teeth of Pomatomus are sharp, deeply socketed and firmly ankylosed to the bone of attachment. Replacement is intraosseus and occurs in alternate tooth loci with long waves of replacement passing from rear to front. The much higher percentage of functional as opposed to eroding teeth suggests that replacement rates are low but that individual teeth are quickly lost once erosion begins. Tooth number increases ontogenetically, ranging from 15–31 dentary teeth and 15–39 premaxillary teeth in the sample studied. Teeth increase in size with every replacement cycle. Remodeling of the attachment bone occurs continuously to accommodate growth. New tooth germs originate from a discontinuous dental lamina and migrate from the lingual (dentary) or labial (premaxillary) epithelium through pores in the bone of attachment into the resorption spaces beneath the existing teeth. Pomatomus shares unique aspects of tooth replacement with barracudas and other scombroids and this supports the interpretation that Pomatomus is more closely related to scombroids than to carangoids.  相似文献   

6.
The dentition and tooth crown microstructure of gekkonids and eublepharids are examined. Scanning electron microscopy shows that the lingual surface of teeth in these lizards has one, two, or, occasionally, several cusps separated by grooves. The teeth of geckoes usually have two (lingual and labial) cusps in the apical region. With respect to the number of teeth, the majority of Gekkota fall into two groups. The first includes a few species with many teeth (50 or more) in the dentary and maxilla, the eublepharids Goniurosaurus and Aeluroscalabotes, and the gekkonid Cyrtopodion louisiadensis. The second group, comprising most of the species, is subdivided into two subgroups, species with 20–30 or 30–40 teeth in jaw bones. Teratoscincus belongs to the first subgroup of the second group.  相似文献   

7.

Unlike their reptile-like ancestors with continuous tooth replacement, mammals have evolved to replace each tooth either only once, or not at all. In previous large-scale comparative studies, it has been suggested that this tooth replacement only occurs from a successional dental lamina produced lingually to the primary tooth. This study aims to document the complete tooth development and replacement pattern of the tammar wallaby (Macropus eugenii). The tammar wallaby is a diprotodont marsupial, a group defined by their two procumbent lower incisors. To provide a comprehensive documentation of the spatio-temporal pattern of tooth development, we used Lugol’s Iodine staining and microCT scanning (diceCT) of embryos and pouch young into adulthood, resulting in high resolution 3D models for both soft and mineralised stages of development for all tooth positions. Our results reveal that the eponymous lower incisors are the successional generation at the third incisor locus, where the primary dentition initiates but never erupts. Furthermore, we track the development of the only replacement tooth, the permanent third premolar (P3), from initiation to eruption, and found it develops from the primary dental lamina, mesial to the dP3. This is contrary to the conventional view of lingual replacement from successional lamina in mammals. Our findings indicate that no functional tooth replacement occurs in the tammar wallaby, and expands the diversity of tooth replacement patterns found in mammals. We also conclude that since almost all marsupial and placental mammals produce replacement teeth from the distalmost deciduous premolar, this tooth should be considered homologous in these two groups.

  相似文献   

8.
In the permanent dentition of the extinct genus Dolichopithecus, M1, I1, and I2 were the first to erupt, followed by M2, canine, P4, and P3. M3 was the last permanent tooth to erupt. At the stage of eruption of P4 and P3, M3 was incompletely mineralized. The difference from the extant Cercopithecoidea is the loss of all deciduous teeth after eruption of incisors and M1 and the similarity is observed in the succession of eruption of permanent teeth. In Dolichopithecus, the lower jaw body retained constant in thickness after eruption of M2. The lower jaw increased in length and depth, as the horizontal ramus grew with the formation and eruption of M3.  相似文献   

9.
Although there are a number of studies on tooth replacement patterns in lower vertebrates, most do not indicate whether this process is continuous throughout the year or is affected by either breeding or seasonal cycles. We have surveyed the replacement patterns found in living and specifically killed Necturus maculosus (Amphibia: Proteidae) to determine the nature of their variation throughout the year prior to investigating possible controlling mechanisms of the formation and eruption of amphibian teeth. Some animals (34), kept in a large outside tank, were killed at monthly intervals and their tooth-bearing bones radiographed using a modification of the technique previously described (Miller and Radnor, '70). Other animals (9), kept at 4°C, were anesthetized with tricaine methanesulphonate (M.S. 222), and wax impressions taken with beading (carding) wax of the functioning teeth at regular intervals. Animals examined in the late spring and summer (25) showed no signs of active tooth replacement. Small replacement teeth visible beneath each functioning tooth enlarged only slightly throughout the summer. In early and late fall some functioning teeth were lost and replacement teeth grew and erupted to replace them. Replacement patterns were very irregular and classical alternate form rarely seen. In a number of animals the replacement series was formed from every third tooth. Animals kept constantly at 4°C showed no replacement phenomena. Patterns varied between the different bones of the jaws and did not support the Zahnreihe concept of Edmund ('60).  相似文献   

10.
Late eruption of the permanent dentition was recently proposed as a shared anatomical feature of endemic African mammals (Afrotheria), with anecdotal reports indicating that it is also present in dasypodids (armadillos). In order to clarify this question, and address the possiblity that late eruption is shared by afrotherians and dasypodids, we quantified the eruption of permanent teeth in Dasypus, focusing on growth series of D. hybridus and D. novemcinctus. This genus is the only known xenarthran that retains two functional generations of teeth. Its adult dentition typically consists of eight upper and eight lower ever-growing (or euhypsodont) molariforms, with no premaxillary teeth. All but the posterior-most tooth are replaced, consistent with the identification of a single molar locus in each series. Comparison of dental replacement and skull metrics reveals that most specimens reach adult size with none or few erupted permanent teeth. This pattern of growth occurring prior to the full eruption of the dentition is similar to that observed in most afrotherians. The condition observed in Dasypus and many afrotherians differs from that of most other mammals, in which the permanent dentition erupts during (not after) growth, and is complete at or near the attainment of sexual maturity and adult body size. The suture closure sequence of basicranial and postcranial epiphyses does not correlate well with dental eruption. The basal phylogenetic position of the taxon within dasypodids suggests that diphyodonty and late dental replacement represent the condition of early xenarthrans. Additionally, the inferred reduction in the number of molars to a single locus and the multiplication of premolars represent rare features for any living mammal, but may represent apomorphic characters for Dasypus.  相似文献   

11.
Two specimens of the peculiar squalid shark,Trigonognathus kabeyai gen. et sp. nov., were collected from the coastal waters of Wakayama and Tokushima, Japan, by bottom trawl at depths of 330 and 360 meters. Shape of teeth similar in both jaws; slender, unicuspid, canine-like, without any cusplets or serrations, with weak thin fold on both lingual and labial sides in anterior teeth on both jaws; tooth at symphysis of each jaw longest. Interspace between teeth very wide. Both jaws triangular in shape. Most of dermal denticles on body and head roughly rhombic, swollen very much near central part, with about 10–40 facets on the dorsal surface of its crown. Preoral snout length very short. Many small organs considered to be photophores present mainly on ventral surfaces of head and body.  相似文献   

12.
Tooth replacement poses many questions about development, pattern formation, tooth attachment mechanisms, functional morphology and the evolution of vertebrate dentitions. Although most vertebrate species have polyphyodont dentitions, detailed knowledge of tooth structure and replacement is poor for most groups, particularly actinopterygians. We examined the oral dentition of the bluefish, Pomatomus saltatrix, a pelagic and coastal marine predator, using a sample of 50 individuals. The oral teeth are located on the dentary and premaxillary bones, and we scored each tooth locus in the dentary and premaxillary bones using a four-part functional classification: absent (A), incoming (I), functional (F=fully ankylosed) or eroding (E). The homodont oral teeth of Pomatomus are sharp, deeply socketed and firmly ankylosed to the bone of attachment. Replacement is intraosseus and occurs in alternate tooth loci with long waves of replacement passing from rear to front. The much higher percentage of functional as opposed to eroding teeth suggests that replacement rates are low but that individual teeth are quickly lost once erosion begins. Tooth number increases ontogenetically, ranging from 15–31 dentary teeth and 15–39 premaxillary teeth in the sample studied. Teeth increase in size with every replacement cycle. Remodeling of the attachment bone occurs continuously to accommodate growth. New tooth germs originate from a discontinuous dental lamina and migrate from the lingual (dentary) or labial (premaxillary) epithelium through pores in the bone of attachment into the resorption spaces beneath the existing teeth. Pomatomus shares unique aspects of tooth replacement with barracudas and other scombroids and this supports the interpretation that Pomatomus is more closely related to scombroids than to carangoids.  相似文献   

13.
A well preserved subadult rhino mandible from Mosbach 2 can be attributed toStephanorhinus hundsheimensis based on a metrical and morphological analysis. A comparison to tooth eruption of livingDiceros bicornis suggests an individual age for the animal of about 7 years at death. The described mandible shows a significant tooth anomaly: two teeth occupy the p3 position on each side of the mandible. Comparisons with three younger juvenileStephanorhinus hundsheimensis from Mosbach 2 show the sequence of tooth eruption for the species and allow us to determine that the anomalous teeth are not persistent milk teeth but are supernumerary teeth, which are morphologically intermediate between normal p2 and p3. The animal’s occlusion was compromised to some degree by the anomaly, and the functional disadvantage may have been critical during a harsh period.   相似文献   

14.
Sicyopterus japonicus (Teleostei, Gobiidae), a hill‐stream herbivorous gobiid fish, possesses an unusual oral dentition among teleost fishes on account of its feeding habitat. By using scanning electron microscopy, light microscopy, and transmission electron microscopy, including vital staining with tetracycline, we examined the development of the attachment tissues of the upper jaw teeth in this fish. The functional teeth of S. japonicus had an asymmetrical dentine shaft. The dentine shaft attached to the underlying uniquely shaped pedicel by means of two different attachment mechanisms. At the lingual base, collagen fiber bundles connected the dentine shaft with the pedicel (hinged attachment), whereas the labial base articulated with an oval‐shaped projection of the pedicel (articulate attachment). The pedicel bases were firmly ankylosed to the crest of the thin flange of porous spongy bone on the premaxillary bone, which afforded a flange‐groove system on the labial surface of the premaxillary bone. Developmentally, the pedicel and thin flange of spongy bone were completely different mineralized attachment tissues. The pedicel had a dual origin, i.e., the dental papilla cells, which differentiated into odontoblasts that constructed the internal surface of the pedicel, and the mesenchymal cells, which differentiated into osteoblasts that formed the outer face of the pedicel. A thin flange of spongy bone was deposited on the superficial resorbed labial side of the premaxillary bone proper, and later rapid bone remodeling proceeded toward the pedicel base. These unique features of pedicellate tooth attachment for the upper jaw teeth in the adult S. japonicus are highly modified teeth for enhancing the ability of individual functional teeth to move closely over irregularities in the rock surfaces during the scraping of algae. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis.  相似文献   

16.
Shunosaurus, from the Middle Jurassic of China, is probably the best‐known basal sauropod and is represented by several complete skeletons. It is unique among sauropods in having a small, bony club at the end of its tail. New skull material provides critical information about its anatomy, brain morphology, tooth replacement pattern, feeding habits and phylogenetic relationships. The skull is akinetic and monimostylic. The brain is relatively small, narrow and primitively designed. The tooth replacement pattern exhibits back to front replacement waves in alternating tooth position. The teeth are spatulate, stout and show well‐developed wear facets indicative of coarser plant food. Upper and lower tooth rows interdigitate and shear past each other. Tooth morphology, skull architecture, and neck posture indicate that Shunosaurus was adapted to ground feeding or low browsing. Shunosaurus exhibits the following cranial autapomorphies: emargination of the ventral margin of the jugal/quadratojugal bar behind the tooth row; postorbital contains a lateral pit; vomers do not participate in the formation of the choanae; pterygoid is extremely slender and small with a dorsal fossa; quadrate ramus of the pterygoid is forked; quadratojugal participates in the jaw articulation; tooth morphology is a combination of cylindrical and spatulate form; basipterygoid process is not wrapped by the caudal process of the pterygoid; trochlear nerve has two exits; occlusal level of the maxillary tooth row is convex downward, whereas that of the dentary is concave upward, acting like a pair of garden shears; dentary tooth count is 25 or more; and the replacing teeth invade the labial side of the functional teeth. Cranial characters among the basal sauropods are reviewed. As Shunosaurus is the earliest sauropod for which cranial remains are known, it occupies an important position phylogenetically, showing the modification of skull morphology from the prosauropod condition. Although the skull synapomorphies of Sauropoda are unknown at present, 27 cranial synapomorphies are known for the clade Eusauropoda. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society, 2002, 136 , 145?169.  相似文献   

17.
The pattern of development of the teeth, laminae, piston, muscles, cartilages and fimbriae associated with the suctorial disc of lampreys has been investigated histologically during the seven stages of metamorphosis in the Southern Hemisphere species, Geotria australis. The cirrhi-bearing hood of ammocoetes and the earliest stage of metamorphosis (S1) were indistinguishable. In stages S2, S3, S4, these cirrhi regressed and the supraoral lamina, piston and infraoral lamina primordial regions began to differentiate. The fifth stage (S5) was characterised by an elaboration of the annular cartilage and disc musculature, deposition of the tectal cartilage, initiation of tooth development, formation of oral fimbriae, and eruption of the keratin cone of the transverse lingual lamina. Subsequently (S6), the keratin cusps of the supraoral and infraoral laminae became exposed at the surface, and distinct retractor and protractor muscles formed around the lingual cartilage. In the latter part of the terminal stage in metamorphosis (S7), just prior to the time when the animal migrates downstream, the primary tooth cones and the keratin cusp of the longitudinal lingual laminae began breaking through the epithelial surface of the disc.  相似文献   

18.
Schultz's rule (as reconstructed by Smith) states that there is a relationship between the pattern (or relative order) of eruption of molar versus secondary (replacement) teeth and the overall pace (or absolute timing) of growth and maturation. Species with 'fast' life histories (rapid dental development, rapid growth, early sexual maturation, short life spans) are said to exhibit relatively early eruption of the molars and late eruption of the secondary replacement teeth (premolars, canines, incisors), whereas species with 'slow' life histories are said to exhibit relatively late eruption of the molars and early eruption of the secondary dentition. In a recent review, B.H. Smith noted that primates with tooth combs might violate this rule because tooth combs tend to erupt early, regardless of the pace of life history. We show that exceptions to Schultz's rule among lemurs are not limited to the relative timing of eruption of the tooth comb. Rather, among lemurs, some species with extremely accelerated dental development exhibit a pattern of eruption of molars and of secondary teeth in direct opposition to the expectations of Schultz's rule. We focus particularly on the pattern (order) and pace (absolute timing) of dental development and eruption in Avahi and Lepilemur - two relatively small, nocturnal folivores with rapid dental development. These taxa differ markedly in their eruption sequences (the premolars erupt after M2 and M3 in Lepilemur but not Avahi ). We offer an explanation for the failure of Schultz's rule to predict these differences. Schultz's rule presumes that eruption timing is dependent on the size of the jaw and that, therefore, molar crown formation and eruption will be delayed in species with slow-growing jaws. We show that a variety of processes (including developmental imbrication) allows the crowns of permanent teeth to form and to erupt into jaws that might appear to be too small to accommodate them.  相似文献   

19.
The predaceous neotropical characoid fish Ctenolucius has an essentially homodont dentition, the number of teeth increasing linearly with age. The basic manner of tooth replacement suggests that Ctenolucius is a primitive characoid. Tooth replacement continues throughout life and is similar to that of tetrapods, involving replacement waves which pass from the back to the front of the jaws. The waves containing the greatest number of teeth are found just anterior to the middle of the jaws. In the upper jaw the increase in the number of teeth is restricted to the anterior portion (premaxillary) whereas the number on the posterior part (maxillary) remains constant. In specimens measuring from 68–230 mm in standard length the posterior portion of the upper jaw doubles in length whereas the anterior portion triples. It is suggested that the area immediately anterior to the middle of the jaw, where replacement waves are longest, is where most of the increase in tooth numbers occurs. During growth of the teeth the absolute height is always greater than the absolute width as the shape changes. The final shape of the recurved conical teeth is determined only in the last stages of tooth formation when the main axis of growth abruptly changes.  相似文献   

20.
The development and replacement of teeth in the frog Rana temporaria is analyzed by dividing the life cycle of the tooth into a number of stages. These stages are identified by the examination of alizarin whole mounts. The dentition in this species is fairly complete and the percentage of functional loci is approximately 74. The teeth in alternate loci are usually at about the same stage in development. The low percentage of non-functional loci is accounted for by the retention of functional teeth over a large fraction of the total life cycle time and the relatively rapid ankylosis of replacement teeth. It is suggested that tooth replacement is essentially a process which involves teeth in alternate loci and that the replacement waves (which connect alternate loci) run parallel to the longitudinal axis of the jaw and are of infinite length. This basic pattern is obscured by many breaks which occur in the replacement waves. The presence of such breaks may be accounted for by variations in the time intervals between the successive stimuli which initiate the Zahnreihen, or simply by the acceleration or deceleration of the development of teeth in one or more loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号