首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a fluidized-bed reactor (FBR) based sulfate reducing bioprocess was predicted using artificial neural network (ANN). The FBR was operated at high (65 degrees C) temperature and it was fed with iron (40-90 mg/L) and sulfate (1,000-1,500 mg/L) containing acidic (pH = 3.5-6) synthetic wastewater. Ethanol was supplemented as carbon and electron source for sulfate reducing bacteria (SRB). The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. The oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic SRB, which resulted in acetate accumulation. Sulfate reduction and acetate oxidation rates showed variation depending on the operational conditions with the maximum rates of 1 g/L/d (0.2 g/g volatile solids (VS)/d) and 0.3 g/L/d (0.06 g/g VS/d), respectively. This study presents an ANN model predicting the performance of the reactor and determining the optimal architecture of this model; such as best back-propagation (BP) algorithm and neuron numbers. The Levenberg-Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 20. The developed ANN model predicted acetate (R=0.91), sulfate (R=0.95), sulfide (R=0.97), and alkalinity (R=0.94) in the FBR effluent. Hence, the ANN based model can be used to predict the FBR performance, to control the operational conditions for improved process performance.  相似文献   

2.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

3.
采用固定化青霉素酰化酶(Penicillin acylase)在反应器中进行青霉素G水解生产6-APA,同时与离子交换柱相组合以连续地去除反应混合液中的苯乙酸。建立了离子变换柱的分格模型(Comparunent model).在确定了青霉素G和苯乙酸沿柱高的浓度分布的基础上,与描述固定化酶反应器的状态方程相结合,得到了固定化酶-离子交换组合系统的数学模型。在将计算机模拟值与实验值进行验证后,探讨了组合系统中树脂量、循环流速和组合起始时间对青霉素G酶解过程的影响。  相似文献   

4.
Porcine pancreatic alpha-amylase (EC 3.2.1.1; abbreviated PPA), which hydrolyzes alpha-D-(1,4) glucosidic bonds in starch and amylose, displays an optimum at pH 6.9 for the majority of substrates. The optimum pH, however, shifted to 5.2 for the hydrolysis of some low molecular substrates (Ishikawa, K., et al., 1990, Biochemistry 29, 7119-7123). Details of the substrate-dependent shift of the optimum pH in PPA were studied by use of a series of maltooligosaccharides with 14C-labeled reducing end glucose as substrates. The optimum pH for maltotriose was 5.2, whereas that for maltopentaose and maltohexaose was unchanged at pH 6.9. The pH profile for the intermediate size substrate maltotetraose showed abnormality; the apparent optimum pH was broadened between 5.5 and 6.5 and the bond cleavage pattern depended on pH, unlike that for the other substrates examined. These results were independent of either buffer systems or substrate concentration. Analyses of the hydrolysates of the maltooligosaccharides revealed that the shift of the optimum pH to the neutral region occurred only when the fifth subsite of PPA in the productive binding modes was occupied by a glucosyl residue of a substrate. The three-catalytic residue model of PPA deduced from the analysis of the hydrolysis of some modified maltooligosaccharides (p-nitrophenyl-alpha-D-maltoside, gamma-cyclodextrin, maltopentaitol, and maltohexaitol) (Ishikawa, K., et al., 1990, Biochemistry 29, 7119-7123) was successfully adapted to the linear maltooligosaccharides used in this work. These results indicate that the different productive binding modes of the linear oligosaccharide substrates affect directly the catalytic power and the optimum pH of PPA.  相似文献   

5.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

6.
The performance and biomass retention of an upflow anaerobic sludge bed (UASB) reactor treating liquid fraction of dairy manure has been investigated at several organic loading rates. Two identical UASB reactors were employed. The biomass of one UASB reactor (FBR) had previously been treated with a cationic polyacrylamide, the other reactor was operated as a control reactor (CR). At 3 and 2 days of HRT both reactors functioned similarly, but at 1.5 days HRT some differences were observed between both effluents. Mean COD(T) removal percentages were 83.4% and 76.5%; COD(VFA) values in effluents were 977 and 2682 mg l(-1) for the FBR and the CR respectively. The VSS initial value in both reactors was 25.66 g VSS, whereas after the experiment the quantities were 31.83 g VSS in the FBR and 23.18 g VSS in the CR reactors. Polymer addition resulted in a higher degree of biomass retention and better performance in the FBR reactor.  相似文献   

7.
The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.  相似文献   

8.
9.
The effect of four operating variables (enzyme concentration, substrate concentration, flow rate, and reaction volume) on the performance of CSTR-hollow fiber membrane reactor was studied for the continuous hydrolysis of a soy protein isolate using Pronase. Based on a residence time distribution study, the reactor system was modeled as an ideal CSTR in combination with the Michaelis-Menten equation of enzyme kinetics. This kinetic model correlated conversion with a space-time parameter modified to include all four independent variables. An empirical model based on curvilinear regression analysis was also developed. Both models predicted conversion fairly well, although the kinetic model slightly underpredicts at high conversion.  相似文献   

10.
Summary The production of l-lactic acid from whey permeate, a waste product of the dairy industry, by fermentation with the lactic acid bacterium Lactobacillus casei subsp. casei was investigated. A fermentation medium consisting of permeate and supplements, which enables exponential growth of the organisms, was developed. A fast method for determination of free and immobilized biomass in solid-rich media, based on measurement of cellular ATP, was evolved. Continuous fermentations in a stirred tank reactor (STR) and in a fluidized bed reactor (FBR) with immobilized biomass were compared. In the STR a volumetric productivity of 5.5 g/l per hour at 100% substrate conversion [dilution rate (D) = 0.22 h–1] was determined. In the FBR porous sintered glass beads were used for immobilization and a maximum biomass concentration of 105 g/kg support was measured. A productivity of 10 g/l per hour was obtained at D = 0.4 h–1 (substrate conversion 93%) and of 13.5 g/l per hour at D = 1.0 h–1 (substrate conversion 50%). Offprint requests to: W. Krischke  相似文献   

11.
Summary A protein rich suspension, obtained from spent grains, was digested in an Anaerobic Rotating Bed Contactor (AnRBC) at 37°C, pH=7 and a hydrolic retention time of 1 hr. The hydrolysis and acidification of the suspension was about 50% on organic carbon basis at reactor loads of 2.5 kg TOC/m3.d (7.5 kg COD/m3.d). A further increase of the conversion rate seems quite possible with an improved reactor configuration.  相似文献   

12.
Analytical expressions are derived for the optimal design (based on minimum overall reactors volume) of a series of N CSTR's performing enzymatic lactose hydrolysis. It is assumed that lactose hydrolysis obeys Michaelis-Menten kinetics with competitive product (galactose) inhibition and no enzyme deactivation occurs. The optimum design of a cascade of ideally mixed reactors are compared with equal size reactors and with plug flow reactor required for a given overall degree of lactose conversion. The effect of operating parameters such as temperature, lactose initial (feed) concentration and conversion, enzyme and product initial concentration on the optimal overall holding time are also investigated. Optimization results for a series of N CSTR's up to five are obtained and compared with plug flow reactor.  相似文献   

13.
We have studied experimentally within the pH range of 3.65-5.5 at 50 degrees C the hydrolysis of cellobiose with Novozym 188, a commercial product with high beta-1,4-glucosidase activity derived from Aspergillus niger. We used wide variations in the conversion to be able to apply the integral method and thus determine that there is substrate and mixed product inhibition. Whether the SES triple compound contributes to the formation of glucose does not influence the fitting of the experimental results to the theoretical model to any significant extent. We have established how pH affects the kinetic parameters and ascertained that pH 4.3 is the optimum for the conversion of cellobiose into glucose.  相似文献   

14.
A lipase from A spergillus niger, immobilized by adsorption on a microporous, polypropylene flat-sheet membrane, was used to effect the continous hydrolysis of the glycerides of melted butterfat at 35°C. For the reaction conditions used in this research, a pseudo-zero order rate expression can be used to model the kinetics of the overall hydrolysis of butterfat. Multiresponse nonlinear regression methods were employed to determine the kinetic parameters of a multisubstrate rate expression derived fro ma mechanism based on the general Michaëlis–Menten approach. For the multiresponse data taken at pH 7.0, the dependence of the maximum rate of release of each fatty acid residue of butterfat on its carbon chain length is accurately described by a skewed, bell-shaped (or Γ-type) distribution. Data taken at five different pH values were fit assuming a Dixon–Webb diprotic model for the pH dependence of the reaction rate. The thermal deactivation of the immobilized lipase obeyed first-order kinetics with a half-life of 19.9 days at 35°C. The multisubstrate model is useful for the prediction of the free fatty acid profile of lipolyzed butterfat, whereas the lumped-substrate model provides an estimate of the overall degree of hydrolysis as a function of the reactor space time.  相似文献   

15.
Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose   总被引:3,自引:0,他引:3  
The production of sugars by the enzymatic hydrolysis of cellulose is a two-step process that includes conversion of the intermediate cellobiose to glucose by beta-glucosidase. The hydrolysis was followed by analyzing the two sugar products (cellobiose and glucose). The enzyme showed maximum activity at pH 4.8. Thermal deactivation was significant at temperatures above 45 degrees C. At 50 degrees C (optimum temperature) thermal deactivation was found to follow first-order kinetics. Several models were tested by modeling the kinetics of the reaction. Their parameter values were determined by numerical optimization, including temperature dependence. The best fitting model was a competitive product inhibition for the two reactions in the operational range.  相似文献   

16.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

17.
Abstract: The enzymatic hydrolysis of UDP-galactose in rat and calf brain was studied. The hydrolysis occurs in two steps: The first is the conversion of UDP-galactose to galactose-1-phosphate catalyzed by nucleotide pyrophosphatase (EC 3.6.1.9), and the second is the conversion of the latter to free galactose by alkaline phosphatase (EC 3.1.3.1). The overall conversion has a pH optimum of 9.0, but there is considerable activity at pH 7.4, which is the optimum for UDP-galactose:ceramide galactosyltransferase in the synthesis of cerebrosides. Preparations from cytosol from calf brain cerebellum or stem that were enriched in UDP-galactose hydrolytic activity inhibit cerebroside synthesis under conditions optimal for the synthesis. Microsome-rich and nuclear debris fractions contain the highest apparent specific activity among the subcellular fractions studied. Hydrolysis of UDP-galactose occurs in all areas of brain, brainstem having the highest activity. The apparent specific activity in jimpy mouse brain homogenate is nearly twice as high as in the control brain homogenate.  相似文献   

18.
Studies were made of invertase adsorption on Amberlite ion exchange resins. Up to 4000 units of adsorbed enzymatic activity (aea) were obtainedper g of IRA 93 resin; for an aea of 1600 units, the maximum ratio of aea over units of soluble enzyme used for adsorption was close to 50%. Nodesorption occurred during extensive washing at 30°C with 0.01M sodiumacetate buffer at pH 5. Progressive desorption of aea from the invertase–IRA 93 complex occurred when buffer molarity and temperature were increased. Desorption differed only slightly when the buffer pH was 3 or 5. Theoptimum pH of aea was 3.2 with IRA 93 resin, and varied between 3.2 and 5.1with other resins, depending on their anionic or cationic nature. Batch hydrolysis of sucrose by IRA 93–adsorbed invertase followed 1st order kinetics with respect to the substrate concentration, as in the case of soluble invertase. Continuous sucrose hydrolysis with IRA 93–adsorbed invertase was performed in a tubular reactor, and the percent conversion was experimentally determined as a function of the flow rate. The reaction was experimentally determined 50% (w/v) sucrose solution, at pH4 and 30°C; at the selected flow rate, the ratio of sucrose hydrolysis remained constant and close to 76%. This shows that invertase was not desorbed from the tubular reactor. Some continuous hydrolyses were performed with an industrial sucrose solution: enzymatic activity seemed to be stable for anextended period for time (1 month) at 30°C and pH 3 or 4.  相似文献   

19.
Amyloglucosidase was covalently bound to collagen sheets by a previously described method. The time of acidic methylation (first step of the collagen activation process) was important to obtain a good enzymatic surfacic activity. Homogeneity of the coupling procedure on the surface of collagen films was shown. Some properties of free enzyme were not affected after grafting; optimum pH and temperature, activation energy, and Km for maltose. Heat stability of the bound enzyme was slightly better; Km for soluble starch increased fivefold. In contrast, the maximal velocity in the presence of soluble starch remained four times that of maltose hydrolysis. Amyloglucosidase collagen membranes were used in a helicoidal reactor to produce glucose from maltose or soluble starch solutions. Tracer studies have shown that the helicoidal reactor behaved as a CSTR. The influence of maltose concentration and flow rate on conversion was studied and confirmed the absence of diffusional limitations for maltose. Recycling of concentrated solutions of maltose and soluble starch indicated strong diffusional restrictions for soluble starch. The catalytic support kept all its activity for 18 days continuous operation at 40 degrees C and 80% after 17 months storage at 4 degrees C.  相似文献   

20.
The purpose of this work was to evaluate and compare two continuous systems of posttreatment of anaerobically pretreated weak black liquor (WBL). The first system consisted of a packed bed reactor (PBR) with Trametes versicolor (Tv) immobilized on wood cubes of holm oak (biocubes). The second system was a fluidized bed reactor (FBR) with Lentinus edodes (Le) immobilized on wood cubes of holm oak. The reactors operated for 65 days at a hydraulic retention time (HRT) of 5 days, at 28 degrees C, with continuous aeration. Response variables monitored were conventional and specific, unit, net removal efficiency (eta and eta(sun), respectively) of chemical oxygen demand (COD), color, and ligninoids, and enzymatic activities of manganese peroxidase (MnP), lignin peroxidase (LiP), laccase (Lac) and proteases. The PBR showed an average color eta superior to that of the FBR (52.42 +/- 21.78% and 25.34 +/- 14.38% for PBR and FBR, respectively); removals of COD and ligninoids presented a similar pattern to that of color. Lac activity was significantly larger in PBR than in FBR. Activity of MnP in PBR was higher than that of the FBR (0.004 and 0.002 U MnP/mL, respectively). This difference could be ascribed to the different fungi present in each bioreactor. LiP activity was very low in both reactors. Average value of proteases was almost double in the FBR as compared with PBR (0.472 and 0.209 U Proteases/mL, respectively). During the last 2 weeks of operation, biocubes in the FBR experienced a significant loss of the attached Le biomass, probably by attrition. This and higher protease activity in the FBR could explain the lower pollutant removals achieved in the FBR. Overall, PBR with immobilized Tv showed a better performance than the FBR with Le for the posttreatment of the recalcitrant anaerobic effluent. Extended and sustained pollutant removal (65 days) was achieved in the PBR, although more research is needed to evaluate bioreactor performance at shorter hydraulic retention times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号