首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of the antitumour acridine derivative amsacrine [4'-(9-acridinylamino)methanesulphon-m-anisidide] on the fluorescence lifetime of DNA-bound ethidium has been investigated using a synchronously pumped cavity dumped dye laser producing picosecond pulses for sample excitation and a time-correlated single photon counting detection system. As the proportion of DNA-bound amsacrine on the synthetic DNA polymer poly[deoxyadenylic-thymidylic acid] is increased, the fluorescence decay curve of ethidium can be accurately resolved into two exponential components. The short lifetime component, whose proportion increases with increasing proportions of DNA-bound amsacrine, has a lifetime of between 3 and 4 ns, significantly longer than that of ethidium in aqueous solution (1.63 ns). The magnitude of the long lifetime component decreases from 25.4 to 14 ns with increasing proportions of bound amsacrine. It is concluded that a new fluorescence state of ethidium (lifetime 3-4 ns) is present, probably resulting from reversible electron transfer between ethidium and amsacrine. The ability of various 9-anilinoacridine derivatives to quench the fluorescence of DNA-bound ethidium appears to be related to the electron donor properties of the substituents on the anilino ring, as well as to experimental antitumour activity. The electron donor properties of DNA-bound amsacrine may therefore be relevant to its antitumour action.  相似文献   

2.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2.  相似文献   

3.
Fluorescence properties (quantum yield, decay curve, lifetime and polarization) of acridine orange and proflavine bound to DNA were examined as a function of nucleotide to dye (P/D) ratio. First, mean fluoiescence lifetimes were determined by the phase-shift measurements. The lifetime and quantum yield of acridine orange increased in a parallel fashion with increasing P/D ratio. There was no parallel relation between the lifetime and quantum yield for proflavine; the lifetime showed a minimum around P/D = 10. Next, fluorescence decay curves were measured by the monophoton counting technique and analyzed with the aid of the method of moments and the Laplace transform method. The results showed that the fluorescence decay of bound acridine orange was exponential above P/D = 10. On the other hand, the decay of bound proflavine was exponential above P/D = 100, but markedly deviated from exponentiality with decreasing P/D ratio. The results of fluorescence polarization suggested that this phenomenon is the result of Förster energy transfer between proflavine molecules bound to the fluorescent site (AT pair) and bound to the quenching site (GC pair). Critical transfer distances were 26-4 and 37.0 Å, respectively, for bound proflavine and acridine orange.  相似文献   

4.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

5.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

6.
The fluorescence decay of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was used to study micro-heterogeneity of 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) liposomes and to characterize the effect of phosphatidic acid on the correlation between fluorescence microheterogeneity and membrane permeability. The fluorescence decay, measured using multifrequency phase fluorometry, has been analyzed either by using a model of discrete exponential components or a model of continuous distribution of lifetime values. Both analyses have shown that TMA-DPH decay is characterized by two components: a long one of about 9 ns and a short one of about 5 ns. In the gel phase, at variance with previous DPH studies, the short component was associated with a large fractional intensity. The distributional analysis showed changes of lifetime values and width in correspondence to the calorimetric transitions. The presence of egg phosphatidic acid increased both long lifetime values and distributional width. The use of TMA-DPH as a probe to evaluate membrane heterogeneity using the distributional width is discussed. The effect of phosphatidic acid on the membrane surface and in the hydrophobic core has been related to its structural properties and to its role in water penetration.  相似文献   

7.
This article describes novel data analysis of fluorescence lifetime-based protein kinase assays to identify and correct for compound interference in several practical cases. This ability, together with inherent advantages of fluorescence lifetime technology (FLT) as a homogeneous, antibody-free format independent of sample concentration, volume, excitation intensity, and geometry, makes fluorescence lifetime a practical alternative to the established “gold standards” of radiometric and mobility shift (Caliper) assays. The analysis is based on a photochemical model that sets constraints on the values of fluorescence lifetimes in the time responses of the assay. The addition of an exponential component with free floating lifetime to the constrained model, in which the lifetimes are constants predetermined from control measurements and the preexponential coefficients are “floating” parameters, allows the relative concentration of phosphorylated and nonphosphorylated substrates to be calculated even in the presence of compound fluorescence. The method is exemplified using both simulated data and experimental results measured from mixtures of dye-labeled phosphorylated and nonphosphorylated kinase substrates. A change of the fluorescence lifetime is achieved by the phosphorylated substrate-specific interaction with a bifunctional ligand, where one binding site interacts with the phosphate group and the other interacts with the dye.  相似文献   

8.
Steady-state and dynamic fluorescence measurements have been performed on DAPI in solution and in complexes formed with a number of synthetic and natural polydeoxynucleotides. The decay of DAPI in buffer at pH 7 was decomposed using two exponentials having lifetime values of approximately 2.8 ns and 0.2 ns. The double exponential character of the decay was maintained over a large pH range from 3 to 9. At pH 1 the short component dominated, whereas at pH 12, only the long component was detectable. Two distinct spectra were associated with the two lifetime components; the short component was shifted to the red. The short lifetime component occurs in the presence of water. In water the excitation spectra depended on the emission wavelength and there was no viscosity dependence of the two forms. To explain these results we propose that there is a ground state conformer in which preferential solvation of the indole ring allows proton transfer in the excited state. DAPI complexed with polydeoxynucleotides retained most of the features of the decay of DAPI in solution. However, the complexes with fuly AT-containing polymers stabilized the longer lifetime form of DAPI because the stronger binding enhanced solvent shielding. A gradual increase of the short lifetime component, which monitors dye solvent exposure, was obtained as the AT content was decreased. For polyd(GC) the decay was similar to that of free DAPI.Abbreviations DAPI 4-6-diamidino-2-phenylindole - POPOP 1,4-bis(5-phenyl-2-oxazolyl)-benzene; 2,2-p-phenylene-bis(5-phenyloxazole) Financial support for this work was provided by a M.P.I. grant 1984, Roma, Italy for M.L.B. and NSF-PCM 84-03107 and PHS-IP41RR03155 for E.G.  相似文献   

9.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

10.
The binding of cyclosporine to human peripheral blood lymphocytes (PBLs) was studied by measuring the fluorescence emission spectrum and lifetime of the fluorescent and immunosuppressive cyclosporine derivative dansyl-cyclosporine (DCs). The emission maximum and fluorescence lifetime of DCs were characterized in several solvents. The fluorescence emission maximum and lifetime of DCs increased at a high dielectric constant. The fluorescence lifetime decay curve of DCs was a monoexponential function in all solvents tested. Fluorescence micrographs of lipid vesicles and erythrocytes labeled with DCs exhibit uniform staining patterns, whereas PBLs show heterogeneous DCs labeling. DCs exhibits a relatively low emission maximum (490 nm) in erythrocyte membranes. Such an emission maximum is characteristic of a hydrophobic environment. DCs in PBLs also has a low emission maximum (484 nm). The lifetime of DCs in PBLs required two exponential terms to properly fit the lifetime decay curve and could not be attributed to light scattering. One short component (4.7 +/- 1.0 ns) and a second long component (18.5 +/- 1.0 ns) were resolved from the DCs fluorescence decay curves. Time-resolved anisotropy of DCs in PBLs revealed that the labeled drug was present in an anisotropic environment, consistent with at least some DCs being bound to a membrane. These fluorescence studies suggest that DCs interacts with multiple and/or heterogeneous sites in peripheral blood lymphocytes.  相似文献   

11.
We report fluorescence lifetimes for in vivo chlorophyll a using a time-correlated single-photon counting technique with tunable dye laser excitation. The fluorescence decay of dark-adapted chlorella is almost exponential with a lifetime of 490 ps, which is independent of excitation from 570 nm to 640 nm.Chloroplasts show a two-component decay of 410 ps and approximately 1.4 ns, the proportion of long component depending upon the fluorescence state of the chloroplasts. The fluorescence lifetime of Photosystem I was determined to be 110 ps from measurements on fragments enriched in Photosystem I prepared from chloroplasts with digitonin.  相似文献   

12.
Time-resolved fluorescence of 4',6-diamidino-2-phenylindole (DAPI) complexes show that for a homogeneous polymer (polyd(AT) or polyd(A).polyd(T)) at high P/D (phosphate/dye) ratio, a single exponential component adequately describes the fluorescence decay. For the AT polymers at low P/D ratio or for native DNA, the decay cannot be described by a single-exponential term. A continuous distribution of lifetime values of Gaussian shape gives a good fit to the decay data. We propose that the lifetime distribution method for the analysis of the fluorescence decay of DNA-DAPI complexes provides a useful method of characterizing the microheterogeneity of site binding.  相似文献   

13.
The spectral characteristics of absorption and fluorescence emission of 9-amino acridine are not altered by the interaction with bacterial chromatophores, except for the attenuation of both the absorption and emission following the formation of a protonic gradient. The lifetime of fluorescence of the dye is significantly affected in the presence of membranes, and even more following illumination. The shortening of the lifetime induced by light is reversible and prevented by nigericin and K+. The onset kinetics of the fluorescence quenching following the generation of an artificial transmembrane pH difference is temperature dependent, with an activation energy of 17 +/- 3 kcal/mol. The effect of pH on the rate constants is consistent with a model assuming that the diffusion of the unprotonated species is the limiting step in the quenching phenomenon. The response of 9-amino acridine to artificially imposed delta pH's has been utilized as a calibration method for the measurements of the light-induced protonic gradient. The apparent inner volume of chromatophores, evaluated from the extraplation of the response at delta pH = 0, was found to be much larger (15- to 40-fold) than the true osmotic volume, indicating that most of the dye is bound to the membrane when accumulated into the inner lumen.  相似文献   

14.
The fluorescence kinetics of C-Phycocyanin in the monomeric, trimeric, and hexameric aggregation states has been measured as a function of the emission wavelength with picosecond resolution using the single-photon timing technique. All the decay curves measured at the various emission wavelengths were analyzed simultaneously by a global data analysis procedure. A sum of four exponentials was required to fit the data for the monomers and trimers. Only in the case of the hexamers, a three-exponential model function proved to be nearly sufficient to describe the experimental decays. The lifetime of those fluorescence components reflecting energy transfer decreased with increasing aggregation. This is due to the increased number of efficient acceptor molecules next to a donor in the higher aggregates. In all aggregates the shortest-lived component, ranging from 50 ps for monomer to 10 ps for hexamers, is observed as a decay term (positive amplitude) at short emission wavelength. At long emission wavelength it turns into a rise term (negative amplitude). The lifetime of a second ps-component ranges from 200 ps for monomers to 50 ps for hexamers. The long-lived (ns) fluorescence is inhomogeneous in monomers and trimers, showing two lifetimes of ~0.6 and 1.3 ns. The latter one carries the larger amplitude. The amplitudes of the kinetic components in the fluorescence decays are presented as time-resolved component spectra. A theoretical model has been derived to rationalize the observed fluorescence kinetics. Using symmetry arguments, it is shown that the fluorescence kinetics of C-Phycocyanin is expected to be characterized by three exponential kinetic components, independent of the aggregation state. An analytical expression is derived, which allows us to gain a detailed understanding of the origin of the different kinetic components and their associated time-resolved spectra. Numerical calculations of time-resolved spectra are compared with the experimental data.  相似文献   

15.
Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1   总被引:1,自引:0,他引:1  
The time-resolved fluorescence of the lone tryptophanyl residue of ribonuclease T1 was investigated by using a mode-locked, frequency-doubled picosecond dye laser. The fluorescence decay could be characterized by a single exponential function with a lifetime of 3.9 ns. The fluorescence was readily quenched by uncharged solutes but was unaffected by iodide ion. These observations are interpreted in terms of the electrostatic properties of the amino acid residues at the active site of the protein, which would appear to restrict the access of solute species to the tryptophanyl residue. The temperature dependence of the fluorescence lifetime and anisotropy decay time could be rationalized in terms of a model which postulates a significant ordering of the solvent layer immediately surrounding the surface of the protein.  相似文献   

16.
Time‐resolved fluorescence as well as steady‐state absorption and fluorescence were detected in order to study the interactions between tetramethylrhodamine (TAMRA) and DNA when TAMRA was covalently labeled on single‐ and double‐stranded oligonucleotides. Fluorescence intensity quenching and lifetime changes were characterized and correlated with different DNA sequences. The results demonstrated that the photoinduced electron transfer interaction between guanosine residues and TAMRA introduced a short lifetime fluorescence component when guanosine residues were at the TAMRA‐attached terminal of the DNA sequences. The discrepancy of two‐state and three‐state models in previous studies was due to the DNA sequence selection and sensitivity of techniques used to detect the short lifetime component. The results will help the design of fluorescence‐based experiments related to a dye labeled probe. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.  相似文献   

18.
E Bismuto  G Irace  E Gratton 《Biochemistry》1989,28(4):1508-1512
The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser. Data analysis was performed in terms of continuous distribution of lifetime having a Lorentzian shape. Data relative to sperm whale myoglobin, which possesses two tryptophanyl residues, i.e., Trp-A-5 and -A-12, provided a broad lifetime distribution including decay rates from a few picoseconds to about 10 ns. By contrast, the tryptophanyl lifetime distribution of tuna myoglobin, which contains only Trp-A-12, showed two well-separated and narrow Lorentzian components having centers at about 50 ps and 3.37 ns, respectively. In both cases, the chi 2 obtained from distribution analysis was lower than that provided by a fit using the sum of exponential components. The long-lived components present in the fluorescence decay of the two myoglobins do not correspond to any of those observed for the apoproteins at neutral pH. The tryptophanyl lifetime distribution of sperm whale apomyoglobin consists of two separated Lorentzian components centered at 2.25 and 5.4 ns, whereas that of tuna apomyoglobin consists of a single Lorentzian component, whose center is at 2.19 ns. Acidification of apomyoglobin to pH 3.5 produced a shift of the distribution centers toward longer lifetimes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Isotherms describing the binding of hydroxystilbamidine to DNA and polydeoxyribonucleotides were obtained by means of sedimentation or dialysis experiments and fluorescence measurements, over a large range of ionic strengths, temperatures and base compositions. Two different sets of binding sites are necessary to explain the shapes of the isotherms. The first one is characterized by a higher binding constant, a topological specificity for the A-T pair, exclusion of four base pairs per bound dye molecule, the involvement of two ion-pairs, an almost purely entropic free energy of binding and a large enhancement of the blue fluorescence (450 nm) when the site corresponds to three adjacent A-T pairs. The latter does not present any specificity nor enhancement of fluorescence and only one ion-pair is formed. From the geometry of the dye and its selective binding to a double stranded structure, the hydroxystilbamidine molecule in the first set of sites is likely to be situated in the small groove astride the two complementary strands and slightly distorting the helical structure. The angle of the dye axis with the helix axis has a value close to 47 degrees. No definite explanation could be given for the specific binding of hydroxystilbamidine but the phenolic hydroxyl group is likely to play a major role. The hydroxystilbamidine molecule can be considered as a useful tool for checking the accessibility of the small groove.  相似文献   

20.
The interactions of two phenazine derivatives, one with a neutral chromophore (glycoside) and the other with a cationic one (quaternary salt), with various synthetic single- and double-stranded polynucleotides and natural DNA were studied by fluorescence techniques, conducting measurements of steady-state fluorescence intensity and polarization degree as well as fluorescence lifetime. These dyes show fluorescence quenching upon intercalation into the GC sequences of the double-stranded nucleic acids and an increase in fluorescence emission and lifetime upon incorporation into the AT and AU sequences. GC base pairs in continuous deoxynucleotide sequences were found to be preferred as binding sites for both phenazines, in contrast to AT base pairs. On the contrary, the continuous ribonucleotide GC sequence binds the phenazines more weakly than does the AU sequence. With regard to the interaction of the phenazines with single-stranded polynucleotides, a stacking interaction of the dye chromophores with the nucleic bases was observed. In that case the guanine residue quenches the cationic phenazine fluorescence, while the stacking interaction with the other bases results in an increase in the fluorescence quantum yield. Unlike the cationic dye, the fluorescence of the neutral phenazine was quenched by both purine bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号