首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of anatomical and physiological results of the vertebrate retina, a method is proposed for analysing the respective fields of ganglion cells in the cat retina. In the model, we assume the following: (a) Ganglion cells receive their input from bipolar and/or amacrine cells. (b) The nonlinearity of ganglion cell responses is due to the activities of transient type amacrine cells. The method has been proved to be effective. According to the results of this investigation, the receptive field properties of X type and Y type ganglion cells are heterogeneous. Thus, it may be considered that their receptive fields consist of center and surround mechanisms. The receptive field properties of X-cells are almost linear and the X-cells seem to receive most of their input from bipolar cells. On the other hand, the ones of Y-cells are highly nonlinear. Consequently, it is conceivable that the Y-cells receive their input mainly from transient type amacrine cells.  相似文献   

2.
Summary The heart of the nudibranch mollusc Archidoris montereyensis is regulated by a small number of powerful effector neurons located in the right pleural and visceral ganglia. Two identifiable neurons in the pleural ganglion, a heart excitor (plHE) and a heart inhibitor (PlHI), are especially important regulators of cardiac function in that low levels of spontaneous activity in either cell significantly alters the amplitude and rate of heart contractions. These neurons have extensive dendritic arbors within the right pleural ganglion and branching axonal processes within the visceral ganglion. The visceral ganglion also contains a heart excitor neuron (VHE) and at least two heart inhibitor neurons (VHI cells), but their influence on cardiac activity is weaker than that of the pleural ganglion cells. All of these heart effector cells appear to be motor neurons with axons that terminate predominately in the atrio-ventricular valve region of the heart via the pericardial nerve. The simplicity and strength of these neuronal connections to the heart of Archidoris make this a favorable preparation for studies of cardiac regulation.Abbreviations Pl HE pleural ganglion heart excitor neuron - Pl HI pleural heart inhibitor neuron - V HE visceral ganglion heart excitor neuron - V HI cells, visceral heart inhibitor neurons - V K visceral kidney excitor neuron - V G visceral gill excitor neuron  相似文献   

3.
Neurosecretory (Nsy) cells within the cerebral ganglion of Lumbricus terrestris were classified ultrastructurally. The Nsy cells within the subesophageal ganglion, nerve cord ganglion, and the peripheral nervous system were also examined. A comparative survey of Nsy cells of four other species of oligochaetes, Eisenia feotida, octolasion cyaneum, Dendrobeona subrubicunda, and Allolophora longa, was also carried out. Seven cell types (A1, A2, A3, A4, A5, C, and SEF), distinguished by special cytological and ultrastructural features, were found within the cerebral ganglion. Distribution of these cells inside and outside the cerebral ganglion was studied in detail by light and electron microscopy. The nerve terminals of each cell type were followed into the neuropile region. Exocytosis from cell bodies appears to be the main release mechanism for the Nsy granules, whereas small Nsy vesicles are released through synapses in the neuropile. Peripheral fibers of some cell types (A1, A2, and A3) extend through the capsule to the pericapsular epithelium. It is possible that Nsy cells secrete hormones from their cell bodies and peripheral processes and that their centrally directed axons release modulators/transmitters within the neuropile.  相似文献   

4.
The present study deals with the topography of retinal ganglion cells (GCs) and spatial resolution in the smelt Hypomesus japonicus. The eyes and retinae were examined by light microscopy and computerized tomography. DAPI labelling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. Two zones of increased GC density in the nasal and temporal retina were bridged by a horizontal streak with the GC density ranging from 5600 to 8000 cells/mm2. The maximum cell density (area retinae temporalis) ranged from 9492 to 14,112 cells/mm2, and the total number of GCs varied from 286 x 103 to 326 x 103 cells in three individuals. The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity) was minimum in the ventral periphery (smaller fish, 1.43 cpd; larger fish, 1.37 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.41 cpd). The relatively high density of GCs and presence of the horizontal streak and area retinae temporalis in the H. japonicus are consistent with its highly visual behaviour. The present findings contribute to better understanding of the factors affecting the topography of retinal ganglion cells and mechanisms of visual adaptation in fish.  相似文献   

5.
The ultrastructure and electrophysiological properties of neurons in the abdominal (visceral) ganglion of the marine opisthobranch gastropod Aplysia brasiliana have been investigated to determine whether this preparation compares favorably with the well studied A. californica for neurobiological research. In general, the topography, morphology and physiological characteristics, including synaptic connections, of neurons in this ganglion are quite similar to those of A. californica. There is close correspondence between the two animals in terms of each of the identified cells or neuronal clusters in the ganglion, including the presence of the cell L10 (interneuron I) in A. brasiliana which makes synaptic connections comparable with those in A. californica. New follower cells of this interneuron have been found in A. brasiliana. This species offers some advantages in that the connective tissue surrounding the ganglion is thinner and more transparent, making cell identification and penetration easier. A. brasiliana appears to exhibit the behaviors of A. californica that have been used in previous functional analyses of neural circuits. In addition, this species swims and exhibits a ?burrowing”? activity less commonly seen in A. californica. The rich repertoire of behaviors and accessibility of large identifiable and functionally interconnected neurons makes this species of Aplysia an excellent model preparation for future neurobiological studies. Similar, less thorough, investigations of the abdominal ganglion of A. dactylomela indicate that this species is also very similar to A. californica in terms of the identified cells in the abdominal ganglion.  相似文献   

6.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

7.
An abdominal ganglion from an Aplysia californica is described, in which cell R15 has anomalously duplicated. The two cells exhibited a high degree of electrical coupling, assuring functional synchrony of output in the cells, which are characterized by a complex firing pattern. Exposure of this ganglion to the phosphodiesterase inhibitor IBMX caused a more altered firing rhythm in one of the cells, as well as an enhanced inhibitory component associated with the coupling potentials between cells, resulting in a loss of synchrony between the two cells.  相似文献   

8.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

9.
Summary In each ganglion of the nerve chain of Eisenia foetida there are several types of neurosecretory cells. They are constant in number and strictly localized. A. Toward the front of the ganglion, the array includes (a) a pair of small cells in the anterior region, and (b) a pair of voluminous elements close to the origin of nerve 2 of the ganglion. These two types of cells are characterized by the presence of secretory granules in the perikaryon and in the axon. B. Between the origins of nerves 2 and 3 of the ganglion, there are (c) a pair of cells possessing a large apical vacuole filled with a secretory material, and (d) a dozen cells distinguished by a dense, highly chromophilic cytoplasm. Only the cells of group (b) are present when the worm emerges from the cocoon. The cells of group (a) appear in the young worm. The cells of types (c) and (d) are only active in worms on their way to sexual maturity. The term neurosecretory elements, as applied to these different cell types is discussed.

Dédié au Professeur W. Bargmann À l'occasion de son 60e anniversaire.  相似文献   

10.
The morphology of the cardiac ganglion of Limulus polyphemus (L) was examined by reconstructions from stained serial sections. This ganglion is composed of two distinct parts: a fiber tract extending the entire length of the heart and a cellular portion underlying the fiber tract. The cellular portion extends continuously from the third pair of ostia to the posterior terminus of the heart. The mean number of ganglion cell bodies is 231. Most of the ganglion cells are located among the glial elements of the cellular portion. The greatest density of cells is found in segments 5 and 6. Six cell types are recognized: (1) large pigmented unipolar cells approximately 120 μ in diameter with distinct connective tissue capsules around them; (2) large pigmented bipolar cells approximately 120 μ in length which are also encapsulated; (3) pigmented multipolar cells approximately 80 μ in diameter which are free of capsules; (4) small pigmented bipolar cells approximately 40 μ in length which are encapsulated but which are found exclusively within the fiber tract; (5) non-pigmented multipolar cells approximately 30 μ in diameter which are found scattered among the connective tissue elements of the cellular portion; and (6) small non-pigmented cells approximately 10 μ in diameter which are found within the unipolar cell capsule and scattered among the connective tissue elements of the ganglion. The variability in cell numbers and the random location of cells points toward non-specific anatomical connectivity between elements of this ganglion.  相似文献   

11.
Summary The pineal organ of the sardine, Sardina pilchardus sardina, was investigated light and electron microscopically. The pineal parenchyma contains sensory cells, supporting cells, and ganglion cells, and the overlying tissues appear specialized for light penetration. The ganglion cells are arranged in 3 groups, their axons giving rise to the tractus epiphyseos. The sensory cell is of a photoreceptor type found in several other teleost species. No definitive evidence of a secretion was educed but some indications of an endocrine function are reported and discussed.The pineal receptor cell of neonates of Mugil spp. which have a pigment-free spot above the pineal organ, was investigated electron microscopically and found to have the same organization as that of adult Mugil auratus.Supported by grants from the Helge Ax:son Johnsons Stiftelse, Stockholm, and from the Kungliga Vetenskapsakademien, Stockholm, Sweden. This is gratefully acknowledged.The animal material has been provided by the Stazione Zoologica di Napoli.  相似文献   

12.
Summary Neuronal pathways in the retrocerebral complex and thoracico-abdominal ganglionic mass of the blowflyCalliphora vomitoria have been identified immunocytochemically with antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). Neurons of the hypocerebral ganglion, immunoreactive to Met-8, have axons in the crop duct nerve and terminals in muscles of the crop and its duct. Certain neurons of the hypocerebral ganglion are also immunoreactive to Met-7, and axons from these cells innervate the heart. Met-8 immunoreactive nerve terminals invest the cells of the corpus allatum. The source of this material is believed to ve a single pair of lateral neurosecretory cells in the brain. There is no Met-7 immunoreactive material in the corpus allatum. In the corpus cardiacum neither Met-7 nor Met-8 immunoreactivity is present in the cells. However, in the neuropil of the gland certain fibres, with their origins elsewhere, do contain Met-8 immunoreactivity. The most prominent neurons in the thoracic ganglion are the Met-7 immunoreactive ventral thoracic neurosecretory cells, axons from which project to neurohaemal areas in the dorsal neural sheath and also, via the ventral connective, to the brain. Co-localisation studies show that the perikarya of these cells are immunoreactive to antisera raised against several vertebrate-type peptides, such as Met-7, gastrin/cholecystokinin and pancreatic polypeptide. However, their axons and terminals show varying amounts of the peptides, suggesting differential transport and utilisation. Only a few cells in the thoracic ganglion are immunoreactive to Met-8 antisera. These lie close to the nerve bundles suppling the legs. In the abdominal ganglion, Met-8 immunoreactive neurons project to the muscles of the hindgut. This study suggests that the extended enkephalin-like peptides ofCalliphora may have a variety of different roles: as neurotransmitter or neuromodulator substances; in the direct innervation of effector organs; and as neurohormones.  相似文献   

13.
Using transmission electron microscopy of thin sections we have examined neuronal concentrations at hypostome-tentacle junctions in Hydra littoralis. A total of 194 ganglion cells were counted in 587 serial thin sections of a single hypostome-tentacle junction. We found two distinct types of ganglion cells: those with and those lacking stereocilia. The majority of the neurons observed lacked stereocilia; in a single hypostome-tentacle junction only 37% of the ganglion cells possessed a kinocilium surrounded by rodlike stereocilia. Most of the ganglion cells (55%) were clustered together in the oral or upper epidermis of the hypostome-tentacle junction: Nineteen percent were in the lateral and 26% in the aboral or lower epidermis. The two types of ganglion cells did not differ significantly in their distribution. Both types of ganglion cell had synaptic contacts with other neurons and with epitheliomuscular cells. More than 85% of the neuroneuronal and 61% of the neuroepitheliomuscular cell synapses were located in the oral epidermis of a hypostome-tentacle junction. In addition, two-way chemical synapses and a gap junction between neurons were observed at hypostome-tentacle junctions. Our morphological evidence of synaptic connectivity in neuronal clusters at hypostome-tentacle junctions suggests that primitive ganglia are present in Hydra.  相似文献   

14.
Summary In Basommatophora medio-dorsal bodies (MDB) are closely attached to the cerebral ganglia, in which, just underneath the bodies, groups of Gomori-positive neurosecretory cells (MDC) occur. It has been suggested that the MDB-cerebral ganglion complex should be regarded as a neuro-endocrine association.In the present study the morphological relation between MDB and the ganglion is histochemically and ultrastructurally investigated in Lymnaea stagnalis, Ancylus fluviatilis, Australorbis glabratus and Planorbarius corneus.Histochemical tests showed the paraldehyde-fuchsin positive material of fibers in the MDB to be different from the neurosecretory material (NSM) in the MDC. At the ultrastructural level no penetration of nerve cell processes through the perineurium, separating the MDB from the ganglion, into the medulla of the MDB was observed. However, excepting for Lymnaea, the perineurium at these places shows particular differentiations. In the medulla of the MDB granule laden profiles (granule ø 700–900 Å) occur. They appeared to be processes of MDB cells.From these results it is concluded that the medulla of the MDB should not be regarded as a neurosecretory neuropile. Apparently, the MDB-cerebral ganglion complex is no neuroendocrine association. Probably the MDB is an endocrine organ. The small electron dense granules of the profiles in the medulla were also found in the MDB cell bodies. They are thought to represent a secretion product. The close morphological relation between MDB and cerebral ganglion may be connected with the origin of the MDB cells from perineural elements.  相似文献   

15.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

16.
  • 1 Neurosecretary cells in the central nervous system of the adult blowfly, Phormia regina Meig., have been examined histologically using the parparaldehyde-fuchsin and Gomori's staining method. Six groups of the neurosecretory cells occur in each hemisphere of the brain, the medial, frontal, lateral A, lateral B, posterior I and posterior II groups. In the subesophageal ganglion, four B-cells and two A-cells are present. In the thoracico-abdominal ganglion, ten A-cells are found in the thoracic region and a total of about 50 A- and B-cells in the hind part of the abdominal region.
  • 2 A comparison with the neurosecretory system of two other species of blowfly, Calliphora erythrocephala Meig., Sarcophaga bullata Parker, and the housefly, Musca domestica L., showed similar arrangements and grouping.
  • 3 Neurosecretory granules have been observed along the axons originating from the medial neurosecretory cells of the brain, and the thoracico-abdominal ganglion. The granules originating from the medial groups can be traced directly to the corpus cardiacum from which they move to the aorta, crop duct and cardia through axons.
  • 4 There is with advancing age a gradual increase in the size of cell bodies and nuclei of the median neurosecretory cells in both females and males of Phormia regina, and also a decrease in stainable granules. This increase in size is dependent on nutrition, with no increase in water alone, a slight increase on sugar, and a maximum increase on sugar and liver. Corresponding increases in size occur in the ovaries in connection with feeding the same substances.
  相似文献   

17.
This study describes the post-embryonic growth of the terminal ganglion in Acheta domesticus in terms of volume and cell number. All measurements were made at the beginning of each instar from hatching until the final moult on animals reared under controlled conditions. The terminal ganglion increases about 40-fold in volume from 2 × 106 μ3 in the first instar to 85 × 106 μ3 in the adult. A double logarithmic plot of ganglion volume against body weight shows that the ganglion volume is a function of body weight to the 0.56 power. Initially the neuropile grows at a greater rate than the cortex; in later stages they increase at the same rate. Increase in cell number was determined from serial sections. The total number of cells, based on corrected nuclear counts, increases from 3,400 to 20,000. There is little or no increase in the number of neurons. There are approximately 2,000 association neurons and 100 motor neurons in all stages. The number of glial cells increase from 1,000 to 17,000. Their multiplication rate appears to be related to the increase in neuron volume. Despite the increase in glial cell number, increase in cell volume is primarily responsible for the increase in total volume of the ganglion.  相似文献   

18.
In order to characterize temporal pattern sensitivity in the cat ganglion cells, a new analysis technique by semi-Markov models which was developed in the previous papers (Tsukada et al., 1975–1977) was applied to input-output relations of the receptive-field. Three types of statistical spot stimuli positioned in the center region of receptive fields were used. Each type of stimulus has an identical histogram in the inter-stimulus intervals and therefore the same mean and variance, but different correlations between adjacent inter-stimulus intervals (Type 1, positive; Type 2, negative; and Type 3, independent processes). From the output spike trains of cat retinal ganglion cells to each stimulus, mean, variance, and histogram were computed. As the result of investigating these data, we could draw the following conclusion from the resultant output interval histograms. The receptive-field-center responses of cat ganglion cells can be classified into two groups (Types L and N) according to the difference of responsiveness to the three types of statistical spot stimuli. A Type L response has the same histogram in interspike intervals for all three stimuli, and is not sensitive to the temporal pattern, while a Type N response has three different forms depending on each type of stimulus showing high sensitivity to the temporal pattern. These results were also simulated by the Markov chain model and discussed with relation to neural coding and classification of ganglion cell types.  相似文献   

19.
Summary The nervous system of the actinotroch larva of Phoronis muelleri has been investigated with the transmission electron microscope (TEM). Attempts have been made to localize all of the major nerves and to reveal the cytoarchitecture of the apical ganglion. The nervous system is intraepithelial in position and consists of an apical ganglion, located on the epistome, with at least four different cell types, including monopolar sensory cells and mono- or multipolar neuron-like cells. From the anterior part of the apical ganglion three median nerves extend to the edge of the epistome; two of these nerves connect to nerves which follow the edge of the epistome all the way to the junction of the epistome and the mesosome. From the posterior part of the ganglion extend two lateral nerves which continue along the tentacular ring. Each tentacle has three nerves located on the frontal side which connect to the nerve ring along the tentacles. Along the posterior ciliary band is a minor nerve ring. In addition, a nerve net is found on the epistome, mesosome, and metasome, but no longitudinal nerves were observed between the posterior ciliary band and the apical ganglion. All nerve cells were found in the apical ganglion and none was observed along the nerves. Sensory cells (probably mechanoreceptors) are located in two rows on each tentacle; sensory organs such as eyes and statocysts were not observed.Abbreviations ac accessory centricle - aen anterior epistome edge nerve - af abfrontal cells - bl basal lamina - bl.c blastocoel coelomocyte - ci cilium - co collar - cp cell process - cr ciliary root - ec 1 epistome edge cell type 1 - mne mouth nerve ring - mo mouth - mp metasomal pouch - ms mesosome - mt metasome - mu muscle - n nerve process - ne nerve - np neuropil - nu nucleus - pc 1 posterior ciliary band cell type 1 - ec 2 epistome edge cell type 2 - ec 3 epistome edge cell type 3 - epi epidermis - es epistome - ese epistome edge - fc frontal cell - gc 1 type 1 ganglion cells - gc 2 type 2 ganglion cells - gc 3 type 3 ganglion cells - ge gut epithelium - ij intermediate junction - laf lateroabfrontal cell - lc lateral cell - lfc laterofrontal cell - lgc lateral ganglion cell - me metacoel epithelium - lne longitudinal median epistome nerves - pc 2 posterior ciliary band cell type 2 - pc procoel - pe procoel epithelium - pen posterior epistome edge nerve - pr posterior ciliary band - p.rec proximal recess of procoel epithelium - prne nerve ring along posterior ciliary band - sj septate junction - sne secondary nerve along the tentacular ring - t tentacle - tr tentacular ring - trne horseshoe-shaped nerve along the tentacular ring  相似文献   

20.
Immunocytochemical techniques were employed to locate somatostatin (SS)-containing cells in the retina of the 13-lined ground squirrel (Spermophilus tridecemlineatus). In normal retinas immunostain was limited to neuronal processes, yet distinctly labeled somata were detected in retinas of animals pretreated with colchicine. Labeled cell bodies were located in the outermost and innermost portions of the inner nuclear layer (INL) and in the ganglion cell layer (GCL). The largest population of SS-like immunoreactive neurons was found in the innermost INL. These cells were identified as small and medium sized amacrine cells whose soma diameters ranged from 4 to 14μm. A smaller population of immunoreactive cells was observed in the outermost region of the INL. These cells, presumptive horizontal cells, were found mainly in peripheral regions of the retina. Immunoreactive cells in the GCL were of two types: displaced amacrines, and retinal ganglion cells. SS-positive axons in the optic fiber layer suggest that some of the immunoreactive GCL neurons were ganglion cells, and it is our opinion that these cells belong to a class of associational ganglion cells previously identified in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号