首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Pyocins S1 and S2 are S-type bacteriocins of Pseudomonas aeruginosa with different receptor recognition specificities. The genetic determinants of these pyocins have been cloned from the chromosomes of P. aeruginosa NIH-H and PAO, respectively. Each determinant constitutes an operon encoding two proteins of molecular weights 65,600 and 10,000 (pyocin S1) or 74,000 and 10,000 (pyocin S2) with a characteristic sequence (P box), a possible regulatory element involved in the induction of pyocin production, in the 5' upstream region. These pyocins have almost identical primary sequences; only the amino-terminal portions of the large proteins are substantially different. The sequence homology suggests that pyocins S1 and S2, like pyocin AP41, originated from a common ancestor of the E2 group colicins. Purified pyocins S1 and S2 make up a complex of the two proteins. Both pyocins cause breakdown of chromosomal DNA as well as complete inhibition of lipid synthesis in sensitive cells. The large protein, but not the pyocin complex, shows in vitro DNase activity. This activity is inhibited by the small protein of either pyocin. Putative domain structures of these pyocins and their killing mechanism are discussed.  相似文献   

2.
The pyocins of Pseudomonas aeruginosa   总被引:6,自引:0,他引:6  
Michel-Briand Y  Baysse C 《Biochimie》2002,84(5-6):499-510
Pyocins are produced by more than 90% of Pseudomonas aeruginosa strains and each strain may synthesise several pyocins. The pyocin genes are located on the P. aeruginosa chromosome and their activities are inducible by mutagenic agents such as mitomycin C. Three types of pyocins are described. (i). R-type pyocins resemble non-flexible and contractile tails of bacteriophages. They provoke a depolarisation of the cytoplasmic membrane in relation with pore formation. (ii). F-type pyocins also resemble phage tails, but with a flexible and non-contractile rod-like structure. (iii). S-type pyocins are colicin-like, protease-sensitive proteins. They are constituted of two components. The large component carries the killing activity (DNase activity for pyocins S1, S2, S3, AP41; tRNase for pyocin S4; channel-forming activity for pyocin S5). It interacts with the small component (immunity protein). The synthesis of pyocins starts when a mutagen increases the expression of the recA gene and activates the RecA protein, which cleaves the repressor PrtR, liberating the expression of the protein activator gene prtN. R and F-pyocins are derived from an ancestral gene, with similarities to the P2 phage family and the lambda phage family, respectively. The killing domains of S1, S2, AP41 pyocins show a close evolutionary relationship with E2 group colicins, S4 pyocin with colicin E5, and S5 pyocin with colicins Ia, and Ib.  相似文献   

3.
PS17 is a bacteriophage of Pseudomonas aeruginosa that is serologically cross-reactive with phage tail-like bacteriocins called R-type pyocins. In addition to having immunological cross-reactivity, certain genes are functionally complementable between PS17 and R-type pyocins. To compare the genetic structures of PS17 and R-type pyocins, a physical map of PS17 genes was constructed by cloning phage DNA fragments on RSF1010-derived vector plasmids. The head and tail gene clusters were tandemly arrayed and together occupied about half of the 41-kilobase-pair PS17 chromosome. With use of these phage clones, the following results were obtained with respect to the genetic relationship between PS17 and R-type pyocins: (i) serological cross-reaction between PS17 and pyocin occurred for the major sheath protein and two components of the fiber, (ii) a certain pyocin mutation was complemented by cloned phage fragments, and (iii) the phage DNA fragment carrying sheath and core tube genes was shown to hybridize to the DNA fragment carrying the pyocin R2 genes.  相似文献   

4.
Mutants of Pseudomonas aeruginosa, defective in the production of active R-type pyocins, were isolated from pyocinogenic strains and their products were characterized. Polysheath-like structures were found in induced lysates of 29 out of 42 mutants. Two mutants (strain P15-16 and M189) were found to produce special defective particles, which were characterized in detail. The other 11 mutants did not produce significant amounts of any structure visible under an electron microscope. Serum blocking powers were found in lysates from P15-16 and M189 to significant amounts. Defective particle produced by strain P15-16 lacked the sheath component, whereas M189 had morphological defects at the junction between sheath and baseplate, and also in the architecture of baseplate. Both defective particles could adsorb to the surface of bacteria, that were sensitive to pyocin, at the tip of their fibers without killing cells. All M189 particles attached to the bacteria had the extended sheaths. Therefore, attachment to the bacteria by fibers is not sufficient to kill cells, and contraction of sheath must occur after the initial adsorption by fibers for pyocin to express its biological activity. Defective particles of strain P15-16, which was derived from strain P15 (a pyocin R1 producer), could be converted to active forms by an in vitro complementation reaction with extracts from certain mutants originated from strain PAO (a pyocin R2 producer). This result indicated the exchangeability of components between R-type pyocins belonging to the different groups.  相似文献   

5.
The genetic determinant for pyocin AP41 , a bacteriocin produced by Pseudomonas aeruginosa PAF, was transferred to P. aeruginosa PAO and analyzed. By conjugation experiments, the pyocin determinant was found to be located on the chromosome, being closely linked to argG at about 45 min on the genetic map. Cloning of the pyocin AP41 gene into the plasmid R68.45 was attempted in vivo by taking advantage of its linkage at argG. R' argG+ plasmids were isolated by interspecific conjugation between P. aeruginosa and Escherichia coli recA argG strains. Some of the R' argG+ plasmids did contain the pyocin AP41 determinant. Genetic and physical analyses of these R' plasmids indicated that the pyocin AP41 determinant was located within a 2.9-kilobase extra segment found at a certain position of the chromosome of various pyocin AP41 producer strains.  相似文献   

6.
Most strains of Pseudomonas aeruginosa produce various types of bacteriocins (pyocins), namely, R-, F-, and S-type pyocins. The production of all types of pyocins was shown to be regulated by positive (prtN) and negative (prtR) regulatory genes. The prtN gene activates the expression of various pyocin genes, probably by the interaction of its product with the DNA sequences conserved in the 5' noncoding regions of the pyocin genes. The prtR gene represses the expression of the prtN gene, and its product, predicted from the nucleotide sequence, has a structure characteristic of phage repressors and seems to be inactivated by the RecA protein activated by DNA damage. A model for the regulation of the pyocin genes is proposed.  相似文献   

7.
Pseudomonas aeruginosa produces three types of bacteriocins: R-, F- and S-type pyocins. The S-type pyocin is a colicin-like protein, whereas the R-type pyocin resembles a contractile but non-flexible tail structure of bacteriophage, and the F-type a flexible but non-contractile one. As genetically related phages exist for each type, these pyocins have been thought to be variations of defective phage. In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages. The results clearly demonstrated that the R-type pyocin is derived from a common ancestral origin with P2 phage and the F-type from lambda phage. This notion was supported by identification of a lysis gene cassette similar to those for bacteriophages. The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins. A systematic polymerase chain reaction (PCR) analysis of P. aeruginosa strains that produce various subtypes of R and F pyocins revealed that the genes for every subtype are located between trpE and trpG in the same or very similar gene organization as for R2 and F2 pyocins, but with alterations in genes that determine the receptor specificity.  相似文献   

8.
Previous results indicate that a group of bacteriocins in Pseudomonas aeruginosa, named R-type pyocins, have a structure resembling bacteriophage tails and share some serological homology with certain bacteriophages. This paper presents genetic evidence which strongly suggests that components of pyocin R2, an R-type pyocin of P. aeruginosa PAO, and tail components of bacteriophage PS17 are interchangeable. Complementation tests with pyocin R2-deficient mutants of PAO and ts mutants of PS17 revealed that various phenotypic interactions occur between the pyocin and bacteriophage in PAO cells lysogenized or infected with PS17. (i) Certain pyocin R2-deficient mutations were phenotypically suppressed in cells carrying PS17 prophage. (ii) A temperature-sensitive mutant of PS17, tsQ31, was phenotypically suppressed in PAO cells treated with mitomycin C. (iii) Phenotypically mixed phages with receptor and serological specificities of pyocin R2 were formed in PS17 lysogens of certain pyocin R2-deficient mutants.  相似文献   

9.
R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.  相似文献   

10.
Using the method proposed by Gillies and Govan and their indicator strains, 342 P. aeruginosa strains isolated from the patients were studied in respect to their pyocinogenicity and typed according to the production of different types of pyocins. Besides, in 206 cultures the pyocin sensitivity of 16 standard P. aeruginosa strains (5 strains obtained from Govan and 11 strains provided by the authors) was determined. All the tested cultures fell into 23 pyocin types; of these, types I and X occured most frequently, 56 strains identified by means of indicators could not be typed due to the fact that the corresponding pyocin types were absent in Govan's scheme. The cultures isolated from the patients and the environmental objects during the outbreak of P. aeruginosa in a hospital were proved to belong to the same pyocin type (III). The double typing of the cultures, according to pyocin production and pyocin sensitivity, allowed to determine individual characteristics of 75% of the tested cultures.  相似文献   

11.
Pyocin S2 purified from mitomycin C-induced lysates of Pseudomonas aeruginosa strain PAO1 has been shown to consist of a complex of two proteins. Further analysis of the purified S2 complex revealed that the 74 kd S2 pyocin demonstrates DNase activity which can be blocked by S2-specific antisera. Chromosomal DNA from pyocin sensitive cells treated with the pyocin S2 complex in vitro did not show any degradation, suggesting that the 10 kd protein inhibits the DNase activity of the S2 protein. These results suggest an alternative mechanism for the toxicity associated with the S2 pyocin.  相似文献   

12.
Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 micro g/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS-PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.  相似文献   

13.
I. B. Duncan  E. V. Booth 《CMAJ》1975,112(7):837-843
All strains of Pseudomonas aeruginosa isolated in a large Canadian hospital over a 3-year period were typed by their pyocin production. Smaller collections of P. aeruginosa from other hospitals were also typed. Almost 3000 strains were examined. The typing method did not require use of complex reagents and was successful in subdividing P. aeruginosa into numerous types. No single type was restricted to infections of one particular kind. Infections of all kinds were associated with a wide variety of pyocin types. Extensive crossinfection with one particular pyocin type was observed only in urinary infection of patients with urologic disorders. The four pyocin types that were most frequent in our entire series have been reported as the commonest types causing infections in many other parts of the world.  相似文献   

14.
Pyocin AP41 degrades the chromosomal DNA in sensitive strains of Pseudomonas aeruginosa but has little effect on RNA, protein, and lipid syntheses. In vitro experiments showed that the carboxyl-terminal part of the large subunit of pyocin AP41 carries an inherent DNase that is responsible for its killing action.  相似文献   

15.
The iron concentration in the growth medium was found to affect the susceptibility of Pseudomonas aeruginosa PML1550 to pyocin S2, a bacteriocin. The efficiency of killing by pyocin S2 was very low when the indicator cells were grown in an iron-rich medium. The capacity of these cells to adsorb pyocin S2 was reduced. Cultivation under limitation of iron (1 microM or less) was necessary to produce a fully sensitive cell population. The growth under iron limitation was accompanied by the appearance of four protein components in the outer membrane of the cells. Nine mutants resistant to pyocin S2 were isolated and their outer membranes were analyzed. They all lacked one component (Fe-b protein) as well as the adsorption capacity for pyocin S2. These findings suggest a possible role of this protein as the receptor for pyocin S2.  相似文献   

16.
Summary The genetic determinant for pyocin AP41, a bacteriocin produced by Pseudomonas aeruginosa, has been cloned. The determinant is located on the chromosome flanked by a pair of inverted repeats, forming a transposon-like structure (TnAP41). TnAP41 possesses some features characteristic of the Tn3 family of transposons. Based on a comparison with the structure of the corresponding region of the chromosome of a nonproducer strain, we propose that P. aeruginosa has acquired pyocinogeny by the transposition of TnAP41 into the chromosome. The determinant comprises two ORFs encoding the protein subunits responsible for the killing action (the large component) and immunity (the small component). Amino acid sequences of the C-terminus of the large component (the deoxyribonuclease domain) and the immunity protein show remarkable homology to those of E2 group colicins, suggesting that these bacteriocins, which are produced by distantly related species, have originated from a common ancestor.  相似文献   

17.
Five R-type pyocins have been reported which are almost identical with one another in their morphology and subunit composition, though distinct in receptor-binding specificity. We isolated fibers from pyocin R2, R3, and R4 by essentially the same procedure as used in our previous isolation of pyocin R1 fiber with unimpaired receptor-binding ability. All the isolated fibers including R1 fiber were indistinguishable from one another, in terms of electron microscopic observation and subunit composition analysis by SDS gel electrophoresis. They consisted mainly of Subunit No. 2 (Mw 71,000) and No. 9 (31,000) proteins. Although Subunit No. 9 protein in every fiber was susceptible to trypsin and afforded a fragment with the same molecular weight (about 19,000) detectable in the SDS gel, Subunit No. 2 protein was cleaved with trypsin only after the fiber had been treated with an organomercurial, 4-(p-sulfophenylazo)-2-mercuriphenol. The cleavage of Subunit No. 2 protein proceeded to give several fragments with molecular weights ranging from 64,000 to 34,000, and the fragmentation patterns were electrophoretically distinct at least among R1 fiber, R3 fiber, and others (R2 and R4 fibers). The results indicate that Subunit No. 2 proteins of these fibers are different from one another in the structure surrounding trypsin-susceptible peptide bonds. Immunological investigations with anti-R1 fiber antibodies provided some additional information on the difference among R-type pyocins at the fiber level.  相似文献   

18.
Functional domain structures of pyocins AP41, S1, and S2 were assigned by examining the functions of chimeric pyocins and deletion derivatives. Pyocins AP41, S1, and S2 are essentially composed of three domains, the receptor-binding domain, the translocation domain, and the DNase domain, in that order from the N terminus to the C terminus. The alignment of these domains is distinct from that in E2-group colicins with functions similar to those of these pyocins. Pyocins AP41 and S2 have a fourth domain between the receptor-binding and the translocation domains, which is dispensable for their killing functions.  相似文献   

19.
Al-Shibib  A.  Al-Mudhaffar  S.  Al-Ani  F.  Hassan  F. 《Folia microbiologica》1985,30(1):25-29
Three types of pyocins were found in Pseudomonas aeruginosa strain 986 and named pyocin type P25, P50, and P70. Production of these types was inducible by UV irradiation. Their molar mass was estimated. The pyocins obtained were different from the known pyocins R, S, and F in their chemical and physical properties. No immunological cross reaction was observed among these pyocins.  相似文献   

20.
Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号