首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolically versatile Pseudomonas aeruginosa inhabits biotic and abiotic environments including the niche of cystic fibrosis (CF) airways. This study investigated how the adaptation to CF lungs affects the within-clone fitness of P. aeruginosa to grow and persist in liquid cultures in the presence of the clonal ancestors. Longitudinal clonal P. aeruginosa isolates that had been collected from 12 CF donors since the onset of colonization for up to 30 years was subjected to within-clone competition experiments. The relative quantities of individual strains were determined by marker-free amplicon sequencing of multiplex PCR products of strain-specific nucleotide sequence variants, a novel method that is generally applicable to studies in evolutionary genetics and microbial ecology with real-world strain collections. For 10 of the 12 examined patient courses, P. aeruginosa isolates of the first years of colonization grew faster in the presence of their clonal progeny than alone. Single growth of individual strains showed no temporal trend with colonization time, but in co-culture, the early isolates out-competed their clonal progeny. Irrespective of the genetic make-up of the clone and its genomic microevolution in CF lungs, the early isolates expressed fitness traits to win the within-clone competition that were absent in their progeny.  相似文献   

2.
Pseudomonas aeruginosa is a metabolically versatile wide-ranging opportunistic pathogen. In humans P. aeruginosa causes infections of the skin, urinary tract, blood, and the lungs of Cystic Fibrosis patients. In addition, P. aeruginosa's broad environmental distribution, relatedness to biotechnologically useful species, and ability to form biofilms have made it the focus of considerable interest. We used 13C metabolic flux analysis (MFA) and flux balance analysis to understand energy and redox production and consumption and to explore the metabolic phenotypes of one reference strain and five strains isolated from the lungs of cystic fibrosis patients. Our results highlight the importance of the oxidative pentose phosphate and Entner-Doudoroff pathways in P. aeruginosa growth. Among clinical strains we report two divergent metabolic strategies and identify changes between genetically related strains that have emerged during a chronic infection of the same patient. MFA revealed that the magnitude of fluxes through the glyoxylate cycle correlates with growth rates.  相似文献   

3.
Auxotrophic Pseudomonas aeruginosa are exclusive to respiratory infections in cystic fibrosis (CF) and bronchiectatic patients, and isolates require specific amino acids for growth on minimal media, particularly methionine. Since auxotrophic and prototrophic P. aeruginosa from CF are identical by genotyping, we investigated the genetic events leading to methionine auxotrophy (Met). Most (10/13) Met strains had the same pattern of growth on methionine precursors and required methionine exclusively for growth. Back mutation to prototrophy was very low (frequencies 10−8 to <10−10). Complementation of the mutations leading to auxotrophy was achieved for five strains with a genomic library of P. aeruginosa PAO1. Strains with different patterns of growth on methionine precursors were complemented by clones with different restriction patterns, while identical clones complemented strains with the same pattern of growth on methionine precursors. Methionine auxotrophy in P. aeruginosa from CF results from stable chromosomal mutations, and the commonest defect is probably in gene(s) encoding enzymes that convert homocysteine to methionine. Received: 2 August 1997 / Accepted: 23 September 1997  相似文献   

4.
Interband DNA of Drosophila melanogaster polytene chromosomes was studied using a novel approach based on the electron microscopic (EM) analysis of chromosome regions carrying DNA fragements of known molecular genetic composition, inserted by P element-mediated transformation. Insertion of such fragments predominantly into interbands makes it possible to clone interband DNA by constructing genomic libraries from transformed strains and probing them with the insert DNA. The transformed strain P[H-sp70:Adh](61C) has insertion in the 61 C7-8 interband on the left arm of chromosome 3. This DNA consists of part of the hsp70 gene promoter fused to the coding region of the Adh gene, and is flanked on either side by P element sequences. We constructed a genomic library from DNA of this strain and isolated a clone containing the insert and the interband DNA. Subsequently the genomic library of wild-type strain was probed with a subclone composed of interband DNA only. We have thus isolated a clone containing the entire native interband. 1289 by of interband DNA was sequenced and found to be AT-rich (53.4%) with numerous regions of overlapping direct and inverted repeats, regulatory sites, and two overlapping open reading frames (ORFs).  相似文献   

5.
The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron.  相似文献   

6.
The mycotic and bacterial flora of 65 patients with cystic fibrosis was studied.C. albicans andP. aeruginosa were present in 33% and 43% of sputa samples, respectively; only 6.5% harbored both organisms. The mycotic flora of the nasopharynx, rectum and skin of the cystic fibrosis patients was similar to that of children with other chronic lung diseases and to that of normal children.In vitro studies clearly revealed inhibition ofC. albicans byP. aeruginosa. It is suggested thatP. aeruginosa, so prevalent with cystic fibrosis, has an inhibitory effect onC. albicans and that this interaction is effective to some extent in preventing candidal infection.Supported in part by Cancer Center Training Grant CA-08480 and Clinical Training Grant CA-08151 from the National Cancer Institute, and by ALSAC.  相似文献   

7.
Pseudomonas aeruginosa, the main pathogen in the airways of patients suffering from cystic fibrosis (CF), binds to carbohydrate chains of respiratory mucins. Using flow cytometry and polyacrylamide based fluorescent glycoconjugates, it was previously demonstrated that several strains of P. aeruginosa recognize a set of neutral and acidic carbohydrate epitopes found at the periphery of respiratory mucins, especially sialyl-Lex. This structure, overexpressed in mucins from CF patients, could be responsible in part for the persistence of lung infection in CF patients. The aim of the present work was to determine whether a glycoconjugate bearing the 6-sulfo-sialyl-Lex epitope, also found in abundance in CF airway mucins, is also preferentially recognised by different strains of P. aeruginosa. The study was conducted with a non-piliated strain 1244-NP and four mucoid strains isolated from CF patients. For four strains out of five, the affinity for 6-sulfo-sialyl-Lex was as high as for sialyl-Lex derivative. These results were confirmed for strain 1244-NP by a microtiter plate assay.  相似文献   

8.
Pseudomonas aeruginosa infection of patients with cystic fibrosis (CF) is a leading cause of their morbidity and mortality. Pathogenesis is initiated in part by molecular interactions of P. aeruginosa with carbohydrate residues in airway mucins that accumulate in the lungs of patients with this disease. To explore the nature of the glycans recognized by a stable, mucoid, alginate-producing strain P. aeruginosa 8830 we generated a genetically modified Pa8830 expressing green fluorescent protein (Pa3380-GFP). We tested its binding to a panel of glycolipids and neoglycolipids in which selected glycans were covalently attached to dipalmitoyl phosphatidylethanolamine and analyzed on silica gel surfaces. Among all glycans tested, Pa8830-GFP bound best to sialyl-Lex-containing glycan NeuAc(α2-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc-R and bound weakly to H-type blood group Fucα1-2Galβ1-4GlcNAc-R, sialyl-lactose, and Lex, and exhibited little binding toward non-fucosylated derivatives. Interestingly, while Pa8830-GFP bound to the glycosphingolipid asialoGM1, it did not appear to bind to a wide variety of other glycosphingolipids including GM1, GM2, asialoGM2, and sulfatide. These results indicate that P. aeruginosa 8830 has preferential binding to sialyl-Lex-containing glycans and has weak recognition of related fucose- and sialic acid-containing glycans. The finding that Pa8830 binds sialyl-Lex-containing glycans, which occur at increased levels in mucins from CF patients, is consistent with studies of other strains of P. aeruginosa and further suggests that such glycans on CF mucins contribute to disease pathogenesis. Invited Submission from Dr. Subhash Basu, from the 7th International Symposium on Biochemical Roles of Eukaryotic Cell Surface Macromolecules in Puri, India, January, 2005.  相似文献   

9.
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.  相似文献   

10.

Background  

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods.  相似文献   

11.

Background  

Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia.  相似文献   

12.
Patients with cystic fibrosis often have chronic and ultimately lethal pulmonary infections with Pseudomonas aeruginosa. In order to understand why these bacteria resist pulmonary clearance, we have investigated the interaction of P. aeruginosa and phagocytic cells. In an earlier study we reported that sub-lytic concentrations of two glycolipids produced by P. aeruginosa (the mono- and dirhamnolipids) caused structural changes in human monocyte-derived macrophages, and at lower concentrations inhibited the phagocytosis of Staphylococcus epidermidis by these cells. In the present study we demonstrate that rhamnolipids also inhibit the in vitro phagocytosis of both P. aeruginosa and Saccharomyces cerevisiae by thioglycollate-elicited mouse peritoneal macrophages. Using lucifer yellow to label the lysosomal compartments of macrophages, we determined that rhamnolipids interfere with the internalization of attached particles and reduce the level of phagosome-lysosome fusion of internalized targets within macrophages. We also demonstrate that physiologically relevant concentrations of rhamnolipids injected intratracheally into rat lungs inhibited the response of alveolar macrophages to a challenge of zymosan particles in vivo. These studies further demonstrate the profound inhibitory effects of P. aeruginosa rhamnolipids on macrophage function and are consistent with our hypothesis that the in situ production of these rhamnolipids directly contributes to the persistence of this pathogen in cystic fibrosis patient lungs. Received: 15 December 1995 / Accepted: 22 January 1996  相似文献   

13.
14.
Production of a thick exopolysaccharide coat (alginate) by mucoid strains ofPseudomonas aeruginosa has been shown to contribute to the pathogenicity and persistence of these bacteria in the lungs of patients with cystic fibrosis. Previous studies have shown that some mucoidP. aeruginosa strains produce an enzyme(s) capable of degrading this alginate coat. In this study, an alginate lyase from mucoidP. aeruginosa strain WcM#2 was isolated and characterized. Lyase production was enhanced by the addition of 0.2–0.3m NaCl to the growth media. The lyase was eluted from an alginate-Sepharose affinity column with 0.5m NaCl, which can serve as a simple one-step purification protocol for obtaining semi-pure functional alginate lyase. Fractionation of the enzyme preparation on a Sephadex G-75 sizing column showed that the enzyme has an apparent molecular weight of 40,000, whereas sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) suggested a molecular weight of approximately 43,000. The affinity-purified enzyme had a pH optimum of 9.0, its activity was enhanced in the presence of 0.3m NaCl, and it showed substrate specificity for polymannuronic acid blocks. These results demonstrate the presence of a mannuronan-specific alginate lyase inP. aeruginosa that differs in several respects from previous reports ofP. aeruginosa alginate lyases.  相似文献   

15.
Burkholderia cepacia is an opportunistic pathogen that causes serious pulmonary infections in cystic fibrosis patients. Although several potential virulence factors—a protease, lipase, and two phospholipases C (one hemolytic and one nonhemolytic)—have been identified, only two, the protease and the lipase, have been described in detail. The goal of this study was to purify and characterize a nonhemolytic phospholipase C secreted by B. cepacia strain Pc224c. The enzyme was concentrated from culture supernatants and purified by polyacrylamide gel electrophoresis. The 54-kDa protein was stable in the presence of sodium dodecyl sulfate (up to 10%) and at 4°, 22°, and 37°C; it was, however, inactivated at 100°C. The enzyme bound to glass, chromatography matrices, and polyvinylidene difluoride and cellulose membranes, suggesting that it is hydrophobic.  In a genetic approach, primers based on conserved sequences of a B. cepacia Pc69 hemolytic phospholipase C and both the Pseudomonas aeruginosa hemolytic and nonhemolytic proteins were designed to identify the Pc224c nonhemolytic phospholipase C gene. One polymerase chain reaction product was identified; it was sequenced and the sequence compared with sequences in the BLAST database. The best match was the Pseudomonas aeruginosa hemolytic phospholipase C. Ten additional B. cepacia strains were screened for the gene by Southern hybridization; five had the 4-kb band, suggesting that these strains have a similar form of the PLC gene. Nine of the ten strains reacted with the probe, suggesting that similar sequences were present, but in another form. Received: 13 October 1998 / Accepted: 6 November 1998  相似文献   

16.
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.  相似文献   

17.
Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis.  相似文献   

18.
Aims: To investigate infra-specific spatio-temporal dynamics of a hospital water network Pseudomonas aeruginosa population. To infer the origin of water network isolates and assess their potential health hazard. Methods and Results: 168 P. aeruginosa strains were isolated from tap waters and swabs of tap nozzle aerators of a hospital unit, over 2 years, and from rectal swabs and nosocomial infections. Genetic diversity among this collection was assessed by pulsed field gel electrophoresis of SpeI restricted genomic DNA. Virulence gene sets, biofilm properties, and hypochlorite resistance were analysed. Exactly 68% of the water samples and 74% of the tap nozzle aerators harboured P. aeruginosa. The strains were divided into 22 clonal lineages, with one dominant clone shown to have been involved in a nosocomial infection. Conclusions: An important turnover among the P. aeruginosa hospital population was observed. Some clonal lineages were found to persist, spread in the unit, and diversify into clonal complexes. Rectal carriage appeared an important source of contamination of the water network. Significance and Impact of the Study: High P. aeruginosa infra-specific population diversity suggested a broad ability in colonizing water networks but persistence analysis indicated a strong selection leading to the emergence of dominant clones.  相似文献   

19.
Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection.  相似文献   

20.
Introduction: Pseudomonas aeruginosa is an opportunistic pathogen and is the main cause of respiratory infection in cystic fibrosis patients. Most strains prevalent within the UK are resistant to two or more antibiotics leading to the search for new therapeutic strategies including the use of bacteriophages. Methods and Results: The infectivity of four bacteriophages was increased using an enhancement protocol based on the use of pomegranate rind extract. Their efficacy against 14 Ps. aeruginosa strains was measured using a qualitative streak test and a novel quantitative assay based on the Bioscreen C microbial growth analyzer. Streak test analysis illustrated an increase in the lytic activity of enhanced bacteriophages, whereas Bioscreen analysis showed that both enhanced and unenhanced bacteriophages failed to meet acceptable levels of activity in c. 50% of strains tested. Conclusions: The quantitative Bioscreen C analyzer showed comparable but not identical results in phage activity and identified significant bacterial re‐growth by 20 h postinfection. Significance and Impact of the Study: With the resurgence of interest in bacteriophage therapy against infectious bacterial diseases, a rapid high throughput quantitative method for screening phage activity and bacterial resistance is required. The use of the Bioscreen C analyzer meets these criteria and was shown to be more stringent than the traditional streak test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号