首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage phi X174 encoded gene A protein is an enzyme required for initiation and termination of successive rounds of rolling circle phi X DNA replication. This enzyme catalyses cleavage and ligation of a phosphodiester bond between nucleotide residues G and A at the phi X origin. The cleavage reaction which occurs during initiation involves formation of a free GOH residue at one end and a covalent bond between tyrosine-OH of the gene A protein and 5' phosphate of the A residue, at the other end of the cleavage site. During termination the covalently bound gene A protein cleaves the phosphodiester bond between G and A at the regenerated origin and ligates the 3' and 5' ends of the displaced genome-length viral DNA to form a circle. Since tyrosyl-OH mediated rearrangements of phosphodiester bonds in DNA may also apply to other enzymes involved in replication or recombination such as topoisomerases we have studied this interesting mechanism in greater detail. Analysis of 32P-labelled gene A protein-DNA complex by tryptic digestion followed by sequencing of 32P-containing peptides showed that two tyrosyl residues in the repeating sequence tyr-val-ala-lys-tyr-val-asn-lys participate in phosphodiester bond cleavage. Either one of these tyrosyl residues can function as the acceptor of the DNA chain. In an alpha-helix the side chains of these tyrosyl residues are in juxtaposition. An enzymatic mechanism is proposed in which these two tyrosyl-OH groups participate in an alternating manner in successive cleavage and ligations which occur during phosphodiester bond rearrangements of DNA.  相似文献   

2.
Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair.  相似文献   

3.
Binding and cleavage of nucleic acids by the "hairpin" ribozyme   总被引:8,自引:0,他引:8  
B M Chowrira  J M Burke 《Biochemistry》1991,30(35):8518-8522
The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.  相似文献   

4.
Structural and functional characteristics were compared for wild-type nuclease from Serratia marcescens, which belongs to the family of DNA/RNA nonspecific endonucleases, its mutational forms, and the nuclease I-PpoI from Physarum polycephalum, which is a representative of the Cys-His box-containing subgroup of the superfamily of extremely specific intron-encoded homing DNases. Despite the lack of sequence homology and the overall different topology of the Serratia marcescens and I-PpoI nucleases, their active sites have a remarkable structural similarity. Both of them have a unique magnesium atom in the active site, which is a part of the coordinatively bonded water-magnesium complex involved in their catalytic acts. In the enzyme-substrate complexes, the Mg2+ ion is chelated by an Asp residue, coordinates two oxygen atoms of DNA, and stabilizes the transition state of the phosphate anion and 3'-OH group of the leaving nucleotide. A new mechanism of the phosphodiester bond cleavage, which is common for the Serratia marcescens and I-PpoI nucleases and differs from the known functioning mechanism of the restriction and homing endonucleases, was proposed. It presumes a His residue as a general base for the activation of a non-cluster water molecule at the nucleophilic in line displacement of the 3'-leaving group. A strained metalloenzyme-substrate complex is formed during hydrolysis and relaxes to the initial state after the reaction. The English version of the paper.  相似文献   

5.
To probe the mechanism of the reversible DNA phosphodiester bond cleavage and religation mechanism of the type I topoisomerase from vaccinia virus, we have synthesized DNA substrates carrying a single nonbridging Rp- or Sp-phosphorothioate (Ps) modification at the scissile phosphodiester (Pd) bond. Analysis of the stereochemical outcome of the net cleavage and rejoining reaction established that the reaction proceeds with retention of configuration, as expected for a double-displacement mechanism. Single-turnover kinetic studies on irreversible strand cleavage using 18/24 mer suicide substrates showed thio effects (k(Pd)/k(Ps)) of 340- and 30-fold for the Rp-Ps and Sp-Ps stereoisomers, respectively, but approximately 10-fold smaller thio effects for the reverse single-turnover religation reaction (Rp-Ps = 30 and Sp-Ps = 3). As compared to the smaller suicide cleavage substrates, approach-to-equilibrium cleavage studies using 32/32 mer substrates showed 7-9-fold smaller thio effects on cleavage, similar effects on religation, and the same ratio of the Rp to Sp thio effect as the suicide cleavage reaction ( approximately 10). In general, thio effects of 2.4-7.2-fold on the cleavage equilibrium are observed for the wild-type and H265A enzymes, suggesting differences in the interactions of the enzyme with the nonbridging sulfur in the noncovalent and covalent complexes. Studies of the cleavage, religation, and approach-to-equilibrium reactions catalyzed by the H265A active site mutant revealed a stereoselective, 11-fold decrease in the Rp-thio effect on cleavage and religation as compared to the wild-type enzyme. This result suggests that His-265 interacts with the nonbridging pro-Rp oxygen in the transition state for cleavage and religation, consistent with the arrangement of this conserved residue in the crystal structure of the human topoisomerase-DNA complex. In general, the greatest effect of thio substitution and the H265A mutation is to destabilize the transition state, with smaller effects on substrate binding. The interaction of His-265 with the pro-Rp nonbridging oxygen is inconsistent with the proposal that this conserved residue acts as a general acid in the strand cleavage reaction.  相似文献   

6.
Wild-type Flp recombinase cleaves DNA in trans.   总被引:1,自引:0,他引:1       下载免费PDF全文
J Lee  M Jayaram    I Grainge 《The EMBO journal》1999,18(3):784-791
Site-specific recombinases of the Integrase family utilize a common chemical mechanism to break DNA strands during recombination. A conserved Arg-His-Arg triad activates the scissile phosphodiester bond, and an active-site tyrosine provides the nucleophile to effect DNA cleavage. Is the tyrosine residue for the cleavage event derived from the same recombinase monomer which provides the RHR triad (DNA cleavage in cis), or are the triad and tyrosine derived from two separate monomers (cleavage in trans)? Do all members of the family follow the same cleavage rule, cis or trans? Solution studies and available structural data have provided conflicting answers. Experimental results with the Flp recombinase which strongly support trans cleavage have been derived either by pairing two catalytic mutants of Flp or by pairing wild-type Flp and a catalytic mutant. The inclusion of the mutant has raised new concerns, especially because of the apparent contradictions in their cleavage modes posed by other Int family members. Here we test the cleavage mode of Flp using an experimental design which excludes the use of the mutant protein, and show that the outcome is still only trans DNA cleavage.  相似文献   

7.
Nup145p is a component of the nuclear pore complex of Saccharomyces cerevisiae and is essential for mRNA export. Nup145p and its apparent vertebrate homologue are the only known nucleoporins to be composed of two functionally independent peptide moieties resulting from the post-translational cleavage of a large precursor molecule. In this study, the proteolytic cleavage site of Nup145p has been mapped upstream of an evolutionary conserved serine residue. Cleavage occurs at the same site when a precursor is artificially expressed in Escherichia coli. A hydroxyl-containing residue is critical for the reaction, although a thiol-containing residue offers an acceptable replacement. In vitro kinetics experiments using a purified precursor molecule demonstrate that the cleavage is self-catalyzed and that the catalytic domain lies within the N-terminal moiety. Taken altogether, our data are consistent with a proteolytic mechanism involving an N>O acyl rearrangement and a subsequent ester intermediate uncovered in other self-processing proteins.  相似文献   

8.
Ability of the EcoRII restriction endonuclease to cleave 14-base-pair DNA duplexes with nucleotide substitutions in the recognition site CCA/TGG and in the adjacent base pair has been studied. Modifications leading to a local change in the substrate conformation (rU residue in and outside the recognition site, A.A- or A.C-pairs in the flanking sequence) reduce the rate of hydrolysis, the effect being maximal when the modified base pair is outside the recognition site. No digestion occurs when the internal dC-residue of the recognition site is 5-methylated in one or both strands. Replacement of dT residue in the EcoRII recognition site by dfl5U residue results in a dramatic inhibition of hydrolysis. Km and kcat for the cleavage of 14-base-pair DNA duplex have been determined. The cleavage rate of the dT-containing strand of the recognition site in 1.5 fold higher comparing with the dA-containing strand. The cleavage of both strands of the substrate by EcoRII endonuclease is confirmed to proceed in one enzyme-substrate complex.  相似文献   

9.
A Yonezawa  J Kuwahara  N Fujii  Y Sugiura 《Biochemistry》1992,31(11):2998-3004
In view of the cationic amphipathic structure of tachyplesin I and antiparallel beta-sheet as a general DNA binding motif, DNA binding of the antimicrobial peptide has been examined. Several footprinting-like techniques using DNase I protection, dimethyl sulfate protection, and bleomycin- (BLM-) induced DNA cleavage were applied in this study. Some distinct footprints with DNase I are detected, and also the sequence-specific cleavage mode of the BLM-Fe(II) complex clearly is altered in the presence of tachyplesin I. In addition, methylation of the N-7 residue of guanine situated in the DNA major groove is not entirely inhibited (or activated) by tachyplesin I. The results suggest that tachyplesin I interacts with the minor groove of DNA duplex. Disappearance of the footprints by dithiothreitol-treated tachyplesin I and Ala-tachyplesin strongly suggests a significant contribution of secondary structure containing an antiparallel beta-sheet to the DNA binding of tachyplesin I. This is the first report on DNA interaction with a small peptide which contains a unique antiparallel beta-sheet structure. The mechanism for antimicrobial action of tachyplesin I has also been inferred.  相似文献   

10.
Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place.  相似文献   

11.
Mutational analysis has previously indicated that D83 and E98 residues are essential for DNA cleavage activity and presumably chelate a Mg2+ ion at the active site of MunI restriction enzyme. In the absence of metal ions, protonation of an ionizable residue with a pKa > 7.0, most likely one of the active site carboxylates, controls the DNA binding specificity of MunI [Lagunavicius, A., Grazulis, S., Balciunaite, E., Vainius, D., and Siksnys, V. (1997) Biochemistry 36, 11093-11099.]. Thus, competition between H+ and Mg2+ binding at the active site of MunI presumably plays an important role in catalysis/binding. In the present study we have identified elementary steps and intermediates in the reaction pathway of plasmid DNA cleavage by MunI and elucidated the effect of pH and Mg2+ ions on the individual steps of the DNA cleavage reaction. The kinetic analysis indicated that the multiple-turnover rate of plasmid cleavage by MunI is limited by product release throughout the pH range 6.0-9.3. Quenched-flow experiments revealed that open circle DNA is an obligatory intermediate in the reaction pathway. Under optimal reaction conditions, open circle DNA remains bound to the MunI; however it is released into the solution at low [MgCl2]. Rate constants for the phoshodiester bond hydrolysis of the first (k1) and second (k2) strand of plasmid DNA at pH 7.0 and 10 mM MgCl2 more than 100-fold exceed the kcat value which is limited by product dissociation. The analysis of the pH and [Mg2+] dependences of k1 and k2 revealed that both H+ and Mg2+ ions compete for the binding to the same residue at the active site of MunI. Thus, the decreased rate of phosphodiester hydrolysis by MunI at pH < 7.0 may be due to the reduction of affinity for the Mg2+ binding at the active site. Kinetic analysis of DNA cleavage by MunI yielded estimates for the association-dissociation rate constants of enzyme-substrate complex and demonstrated the decreased stability of the MunI-DNA complex at pH values above 8.0.  相似文献   

12.
DNA supercoiling by DNA gyrase involves the cleavage of a DNA helix, the passage of another helix through the break, and the religation of the first helix. The cleavage-religation reaction involves the formation of a 5'-phosphotyrosine intermediate with the GyrA subunit of the gyrase (A(2)B(2)) complex. We report the characterization of mutations near the active-site tyrosine residue in GyrA predicted to affect the cleavage-religation reaction of gyrase. We find that mutations at Arg32, Arg47, His78 and His80 inhibit DNA supercoiling and other reactions of gyrase. These effects are caused by the involvement of these residues in the DNA cleavage reaction; religation is largely unaffected by these mutations. We show that these residues cooperate with the active-site tyrosine residue on the opposite subunit of the GyrA dimer during the cleavage-religation reaction.  相似文献   

13.
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.  相似文献   

14.
The catalytic properties of DNA gyrase, an A 2B 2 complex, are modulated by the presence of divalent metal ions. Using circular dichroism, protein melting experiments and enzyme activity assays, we investigated the correlation between the A 2B 2 conformation, the nature of the metal ion cofactor and the enzyme activity in the presence and absence of DNA substrate. At room temperature, DNA gyrase structure is not appreciably affected by Ca (2+) or Mg (2+) but is modified by Mn (2+). In addition, metal ions strongly affect the enzyme's thermal transitions, rendering the A 2B 2 structure more flexible. Using the B subunit, we were able to identify two distinct complexes with manganese ions. The first one exhibits a 1:1 stoichiometry and is not affected by the presence of DNA. The second complex is associated with a large protein structural modification that can be remarkably modulated by addition of the DNA substrate. This behavior is conserved in the reconstituted protein. Studies with two GyrB mutants indicate that Mn (2+) interference with the TOPRIM region modulates gyrase supercoiling activity. In particular, considering the need for two divalent metal ions for an efficient catalytic cleavage of the phosphodiester bond, our data suggest that residue D500 participates in the first complexation event (DNA-independent), whereas residue D498 is involved mainly in the second process. In conclusion, a combination of the ion features (ionic size, electronegativity, coordination sphere) operating at the level of the catalytic region and of the ion-driven modifications in overall enzyme structure and flexibility contribute to the mechanism of gyrase activity. An effectual role for DNA recruiting the second catalytic metal ion is envisaged.  相似文献   

15.
Gopal YN  Jayaraju D  Kondapi AK 《Biochemistry》1999,38(14):4382-4388
The ability of two structurally different ruthenium complexes to interfere with the catalytic activity of topoisomerase II was studied to elucidate their molecular mechanism of action and relative antineoplastic activity. The first complex, [RuCl2(C6H6)(dmso)], could completely inhibit DNA relaxation activity of topoisomerase II and form a drug-induced cleavage complex. This strongly suggests that the drug interferes with topoisomerase II activity by cleavage complex formation. The bi-directional binding of [RuCl2(C6H6)(dmso)] to DNA and topoisomerase II was verified by immunoprecipitation experiments which confirmed the presence of DNA and ruthenium in the cleavage complex. The second complex, Ruthenium Salicylaldoxime, could not inhibit topoisomerase II relaxation activity appreciably and also could not induce cleavage complex formation, though its DNA-binding characteristics and antiproliferation activity were almost comparable to those of [RuCl2(C6H6)(dmso)]. The results suggest that the difference in ligands and their orientation around a metal atom may be responsible for topoisomerase II poisoning by the first complex and not by the second. A probable mechanism is proposed for [RuCl2(C6H6)(dmso)], where the ruthenium atom interacts with DNA and ligands of the metal atom form cross-links with topoisomerase II. This may facilitate the formation of a drug-induced cleavage complex.  相似文献   

16.
D A Dunn  V H Lin  I E Kochevar 《Biochemistry》1992,31(46):11620-11625
A photochemical mechanism for single-strand cleavage of DNA is proposed in which a photoexcited intercalator transfers an electron to an externally bound cosensitizer. Once formed, the oxidized intercalator oxidizes an adjacent base, creating a charge-separated complex from which reactions leading to cleavage of the sugar-phosphate backbone occur in competition with back electron transfer. Using ethidium bromide (EB) as the intercalator and methyl viologen (MV) as the externally bound cosensitizer, a 10-fold enhancement in the rate of single-strand break formation was found in pBR322 DNA over that for EB alone using 488-nm excitation. The rate of cleavage correlated with the amount of MV bound to DNA. In accord with the expected redox properties of the one-electron-oxidized EB and the DNA bases, cleavage occurs selectively at guanines. Although the reaction proceeds in nitrogen-purged solutions, the rate of cleavage in air-saturated solutions was enhanced 2-fold. Treatment of irradiated samples with alkali leads to a 2-fold increase in the yield of single-strand breaks. These results support a mechanism in which cleavage occurs by selective oxidation of guanines in DNA, initiated by photochemical cosensitized electron transfer from intercalated EB to externally bound MV, and may provide a basis for the development of light-activated base-selective DNA cleaving agents.  相似文献   

17.
18.
Two dipeptides, each containing a lysyl residue, were disubstituted with chlorambucil (CLB) and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid (DMQ-MA): DMQ-MA-Lys(CLB)-Gly-NH2 (DM-KCG) and DMQ-MA-beta-Ala-Lys(CLB)-NH2 (DM-BKC). These peptide-drug conjugates were designed to investigate sequence-specificity of DNA cleavage directed by the proximity effect of the DNA cleavage chromophore (DMQ-MA) situated close to the alkylating agent (CLB) inside a dipeptide moiety. Agarose electrophoresis studies showed that DM-KCG and DM-BKC possess significant DNA nicking activity toward supercoiled DNA whereas CLB and its dipeptide conjugate Boc-Lys(CLB)-Gly-NH2 display little DNA nicking activity. ESR studies of DMQ-MA and DM-KCG both showed five hyperfine signals centered at g = 2.0052 and are assigned to four radical forms at equilibrium, which may give rise to a semiquinone radical responsible for DNA cleavage. Thermal cleavage studies at 90 degrees C on a 265-mer test DNA fragment showed that besides alkylation and cleavage at G residues, reactions with DM-KCG and DM-BKC show a preference for A residues with the sequence pattern: 5'-G-(A)n-Pur-3' > 5'-Pyr-(A)n-Pyr-3' (where n = 2-4). By contrast, DNA alkylation and cleavage by CLB occurs at most G and A residues with less sequence selectivity than seen with DM-KCG and DM-BKC. Thermal cleavage studies using N7-deazaG and N7-deazaA-substituted DNA showed that strong alkylation and cleavage at A residues by DM-KCG and DM-BKC is usually flanked on the 3' side by a G residue whereas strong cleavage at G residues is flanked by at least one purine residue on either the 5' or 3' side. At 65 degrees C, it is notable that the preferred DNA cleavage by DM-KCG and DM-BKC at A residues is significantly more marked than for G residues in the 265-mer DNA; the strongest sites of A-specific reaction occur within the sequences 5'-Pyr-(A)n-Pyr-3'; 5'-Pur-(A)n-G-3' and 5'-Pyr-(A)n-G-3'. In pG4 DNA, cleavage by DM-KCG and DM-BKC is much greater than that by CLB at room temperature and at 65 degrees C. It was also observed that DM-KCG and DM-BKC cleaved at certain pyrimidine residues: C40, T66, C32, T34, and C36. These cleavages were also sequence selective since the susceptible pyrimidine residues were flanked by two purine residues on both the 5' and 3' sides or by a guanine residue on the 5' side. These findings strongly support the proposal that once the drug molecule is positioned so as to permit alkylation by the CLB moiety, the DMQ-MA moiety is held close to the alkylation site, resulting in markedly enhanced sequence-specific cleavage.  相似文献   

19.
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic mechanism, we determined the X-ray structures of I-SceI in complex with DNA substrates that are nicked in either the top or bottom strands. The structures resemble intermediates along the DNA cleavage reaction. In a structure containing a nick in the top strand, the spatial arrangement of metal ions is similar to that observed in the structure that contains uncleaved DNA, suggesting that cleavage of the bottom strand occurs by a common mechanism regardless of whether this strand is cleaved first or second. In the structure containing a nick in the bottom strand, a new metal binding site is present in the active site that cleaves the top strand. This new metal and a candidate nucleophilic water molecule are correctly positioned to cleave the top strand following bottom strand cleavage, providing a plausible mechanism for top strand cleavage.  相似文献   

20.
Quinolone drugs can inhibit bacterial DNA replication, via interaction with the type II topoisomerase DNA gyrase. Using a DNA template containing a preferred site for quinolone-induced gyrase cleavage, we have demonstrated that the passage of the bacteriophage T7 replication complex is blocked in vitro by the formation of a gyrase-drug-DNA complex. The majority of the polymerase is arrested approximately 10 bp upstream of this preferred site, although other minor sites of blocking have been observed. The ability of mutant gyrase proteins to arrest DNA replication in vitro has been investigated. Gyrase containing mutations in the A subunit at either the active-site tyrosine (Tyr122) or Ser83 (a residue known to be involved in quinolone interaction) failed to halt the progress of the polymerase. A low-level, quinolone-resistant mutation in the B subunit of gyrase showed reduced blocking compared to wild-type. We have demonstrated that DNA cleavage and replication blocking occur on similar time-scales and we conclude that formation of the cleavable complex is a prerequisite for polymerase blocking. Additionally, we have shown that collision of the replication proteins with the gyrase-drug-DNA complex is not sufficient to render this complex irreversible and that further factors must be involved in processing this stalled complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号