首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to the tod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. putida, site-directed mutagenesis was used to knock out the gene in the wild-type DOT-T1E strain and in a mutant derivative, DOT-T1E-18. This mutant carried a Tn5 insertion in the ttgABC gene cluster, which encodes a toluene efflux pump that is synthesized constitutively. For site-directed mutagenesis, a cassette to knock out the ttgD gene and encoding resistance to tellurite was constructed in vitro and transferred to the corresponding host chromosome via the suicide plasmid pKNG101. Successful replacement of the wild-type sequences with the mutant cassette was confirmed by Southern hybridization. A single ttgD mutant, DOT-T1E-1, and a double mutant with knock outs in the ttgD and ttgA genes, DOT-T1E-82, were obtained and characterized for toluene tolerance. This was assayed by the sudden addition of toluene (0.3% [vol/vol]) to the liquid culture medium of cells growing on Luria-Bertani (LB) medium (noninduced) or on LB medium with toluene supplied via the gas phase (induced). Induced cells of the single ttgD mutant were more sensitive to sudden toluene shock than were the wild-type cells; however, noninduced wild-type and ttgD mutant cells were equally tolerant to toluene shock. Noninduced cells of the double DOT-T1E-82 mutant did not survive upon sudden toluene shock; however, they still remained viable upon sudden toluene shock if they had been previously induced. These results are discussed in the context of the use of multiple efflux pumps involved in solvent tolerance in P. putida DOT-T1E.  相似文献   

2.
In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if preinduced with small amounts of toluene supplied via the gas phase. In this article we report the identification and characterization in this strain of a third efflux pump, named TtgGHI. The ttgGHI genes form an operon that is expressed constitutively at high levels from a single promoter. In the presence of toluene the operon is expressed at an even higher level from two promoters, the constitutive one and a previously unreported one that is inducible and that partially overlaps the constitutive promoter. By site-directed mutagenesis we constructed a single ttgH mutant which was shown to be unable to survive sudden 0.3% (vol/vol) toluene shocks regardless of the preculture conditions. The mutation was transferred to single and double mutants to construct mutant strains in which two or all three pumps are knocked out. Survival analysis of induced and noninduced cells revealed that the TtgABC and TtgGHI pumps extruded toluene, styrene, m-xylene, ethylbenzene, and propylbenzene, whereas the TtgDEF pump removed only toluene and styrene. The triple mutant was hypersensitive to toluene, as shown by its inability to grow with toluene supplied via the vapor phase.  相似文献   

3.
The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was seen in a nalD mutant, consistent with NalD directly controlling mexAB-oprM expression from a second promoter.  相似文献   

4.
5.
Pseudomonas putida DOT-T1E, known for its high tolerance to solvents, possesses three Resistance–Nodulation–Cell Division-type (RND) efflux pumps, namely TtgABC, TtgDEF and TtgGHI, which are involved in the active extrusion of solvents. Expression of the ttgABC and ttgGHI operons was previously shown to be regulated by the adjacently encoded repressors, TtgR and TtgV, respectively. Upstream of the third RND operon, ttgDEF , is located a putative regulator gene, ttgT . In this study, TtgT is shown to bind to the promoter region of the ttgDEF operon, and to be released from DNA in the presence of organic solvents. In vitro studies revealed that TtgV and TtgT bind the same operator sites in both the ttgDEF and the ttgGHI promoters. However, the affinity of TtgV for the ttgDEF operator was higher than that of TtgT, which, together with the fact that the ttgV promoter seems to be almost twice stronger than the ttgT promoter, explains why TtgV takes over in the regulation of the two efflux pump operons. The functional replacement of the cognate, chromosomally encoded TtgT by the plasmid-encoded paralogue TtgV illustrates a new mode of efflux pump regulation of which the physiological relevance is discussed.  相似文献   

6.
7.
The TtgGHI efflux pump of Pseudomonas putida DOT-T1E plays a key role in the innate and induced tolerance of this strain to aromatic hydrocarbons and antibiotics. The ttgGHI operon is expressed constitutively from two overlapping promoters in the absence of solvents and at a higher level in their presence, but not in response to antibiotics. Adjacent to the ttgGHI operon is the divergently transcribed ttgVW operon. In TtgV-deficient backgrounds, although not in a TtgW-deficient background, expression of the ttgGHI and ttgVW operons increased fourfold. This suggests that TtgV represses expression from the ttgG promoters and controls its own. TtgW plays no major role in the regulation of expression of these promoters. Primer extension revealed that the divergent ttgG and ttgV promoters overlap, and mobility shift assays indicated that TtgV binds to this region with high affinity. DNaseI footprint assays revealed that TtgV protected four DNA helical turns that include the -10 and -35 boxes of the ttgV and ttgG promoters.  相似文献   

8.
9.
10.
Integration host factor (IHF) is a DNA-binding and -bending protein that has been found in a number of gram-negative bacteria. Here we describe the cloning, sequencing, and functional analysis of the genes coding for the two subunits of IHF from Pseudomonas putida. Both the ihfA and ihfB genes of P. putida code for 100-amino-acid-residue polypeptides that are 1 and 6 residues longer than the Escherichia coli IHF subunits, respectively. The P. putida ihfA and ihfB genes can effectively complement E. coli ihf mutants, suggesting that the P. putida IHF subunits can form functional heterodimers with the IHF subunits of E. coli. Analysis of the amino acid differences between the E. coli and P. putida protein sequences suggests that in the evolution of IHF, amino acid changes were mainly restricted to the N-terminal domains and to the extreme C termini. These changes do not interfere with dimer formation or with DNA recognition. We constructed a P. putida mutant strain carrying an ihfA gene knockout and demonstrated that IHF is essential for the expression of the P(U) promoter of the xyl operon of the upper pathway of toluene degradation. It was further shown that the ihfA P. putida mutant strain carrying the TOL plasmid was defective in the degradation of the aromatic model compound benzyl alcohol, proving the unique role of IHF in xyl operon promoter regulation.  相似文献   

11.
Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow with toluene as the sole C-source. Tn5 mutagenesis was carried out and a mutant unable to use toluene as the sole C-source was isolated. DNA was sequenced upstream and downstream of the site where the Tn5 was inserted. Analysis of the DNA revealed 13 open reading frames (ORFs) homologous to the tod genes for the toluene dioxygenase pathway of P. putida F1, which are organized in two operons: todXFC1C2BADEGIH and todST. The Tn5 was inserted at the todH gene. The role of the todXFC1C2BADEGIH operon in toluene metabolism was further confirmed in a todC1 mutant (generated by insertional inactivation), which was unable to use toluene as the sole C-source. Primer extension analysis identified a single promoter upstream from the todX gene. The -10 and -35 regions of this promoter showed no significant homology to known promoters. Expression from the todX promoter occurred in response to toluene, ethylbenzene, styrene, xylenes and other aromatic hydrocarbons. Expression from the todS gene was constitutive. Sensitivity to toluene of the todH and todC1 mutants was similar to that of the wild-type strain. This suggests that toluene metabolism is not involved in toluene tolerance.  相似文献   

12.
The unusual tolerance of Pseudomonas putida DOT-T1E to toluene is based on the extrusion of this solvent by constitutive and inducible efflux pumps and rigidification of its membranes via phospholipid alterations. Pseudomonas putida DOT-T1E-109 is a solvent-sensitive mutant. Mutant cells were less efficient in solvent extrusion than the wild-type cells, as shown by the limited efflux of 14C-1,2,4-trichlorobenzene from the cell membranes, despite the fact that the efflux pumps are overexpressed as a result of increased expression of the ttgDEF and ttgGHI efflux pump operons. This limitation could be the result of alterations in the outer membrane because the mutant cells released more beta-lactamase to the external medium than the wild-type cells. The mutant P. putida DOT-T1E-109 showed negligible synthesis of fatty acids in the presence of sublethal concentrations of toluene as revealed by analysis of 13CH3-13COOH incorporation into fatty acids. In contrast, the mutant strain in the absence of solvents, and the wild-type strain, both in the presence and in the absence of toluene, incorporated 13CH3-13COOH at a high rate into de novo synthesized lipids. The mutation in P. putida DOT-T1E-109 increases sensitivity to the solvent because of a limited efflux of the solvent from the cell membranes with the concomitant inhibition of fatty acid biosynthesis.  相似文献   

13.
14.
15.
Pseudomonas putida KT2440 is a soil microorganism that attaches to seeds and efficiently colonizes the plant's rhizosphere. Lysine is one of the major compounds in root exudates, and P. putida KT2440 uses this amino acid as a source of carbon, nitrogen, and energy. Lysine is channeled to delta-aminovaleric acid and then further degraded to glutaric acid via the action of the davDT gene products. We show that the davDT genes form an operon transcribed from a single sigma70-dependent promoter. The relatively high level of basal expression from the davD promoter increased about fourfold in response to the addition of exogenous lysine to the culture medium. However, the true inducer of this operon seems to be delta-aminovaleric acid because in a mutant unable to metabolize lysine to delta-aminovaleric acid, this compound, but not lysine, acted as an effector. Effective induction of the P. putida P(davD) promoter by exogenously added lysine requires efficient uptake of this amino acid, which seems to proceed by at least two uptake systems for basic amino acids that belong to the superfamily of ABC transporters. Mutants in these ABC uptake systems retained basal expression from the davD promoter but exhibited lower induction levels in response to exogenous lysine than the wild-type strain.  相似文献   

16.
The novel insertion sequence ISS12 plays a key role in the tolerance of Pseudomonas putida S12 to sudden toluene stress. Under normal culturing conditions the P. putida S12 genome contained seven copies of ISS12. However, a P. putida S12 population growing to high cell density after sudden addition of a separate phase of toluene carried eight copies. The survival frequency of cells in this variant P. putida S12 population was 1000 times higher than in "normal" P. putida S12 populations. Analysis of the nucleotide sequence flanking the extra ISS12 insertion revealed integration into the srpS gene. srpS forms a gene cluster with srpR and both are putative regulators of the solvent resistance pump SrpABC. SrpABC makes a major contribution to solvent tolerance in P. putida S12 and is induced by toluene. The basal level of srp promoter activity in the P. putida S12 variant was seven times higher than in wild-type P. putida S12. Introduction of the intact srpRS gene cluster in the variant resulted in a dramatic decrease of survival frequency after a toluene shock. These findings strongly suggest that interruption of srpS by ISS12 up-regulates expression of the solvent pump, enabling the bacterium to tolerate sudden exposure to lethal concentrations of toxic solvents. We propose that P. putida S12 employs ISS12 as a mutator element to generate diverse mutations to swiftly adapt when confronted with severe adverse conditions.  相似文献   

17.
18.
19.
20.
Pseudomonas putida KL47 is a natural isolate that assimilates benzene, 1-alkylbenzene (C(1)-C(4)), biphenyl, p-cumate, and p-cymene. The genetic background of strain KL47 underlying the broad range of growth substrates was examined. It was found that the cym and cmt operons are constitutively expressed due to a lack of the cymR gene, and the tod operon is still inducible by toluene and biphenyl. The entire array of gene clusters responsible for the catabolism of toluene and p-cymene/p-cumate has been cloned in a cosmid vector, pLAFR3, and were named pEK6 and pEK27, respectively. The two inserts overlap one another and the nucleotide sequence (42,505 bp) comprising the cym, cmt, and tod operons and its flanking genes in KL47 are almost identical (>99%) to those of P. putida F1. In the cloned DNA fragment, two genes with unknown functions, labeled cymZ and cmtR, were newly identified and show high sequence homology to dienelactone hydrolase and CymR proteins, respectively. The cmtR gene was identified in the place of the cmtI gene of previous annotation. Western blot analysis showed that, in strains F1 and KL47, the todT gene is not expressed during growth on Luria Bertani medium. In minimal basal salt medium, expression of the todT gene is inducible by toluene, but not by biphenyl in strain F1; however, it is constantly expressed in strain KL47, indicating that high levels of expression of the todST genes with one amino acid substitution in TodS might provide strain KL47 with a means of adaptation of the tod catabolic operon to various aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号