首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbic acid increases the short circuit current (Isc) across the amphibian cornea when it is present at either surface of this epithelium. These effects were additive. The effect was greater when it was on the tear side. The response returned to baseline levels when the ascorbic acid was washed from the bathing media. The effect of ascorbic acid on Isc when it was on the aqueous humor side of the cornea could be blocked by bumetanide but that due to the vitamin's presence on the tear side was unchanged. The ascorbic acid could enter the tissue and crossed the cornea at similar rates in either direction. When the cornea was bathed by a Cl?-free solution or exposed to bumetanide, the rise in Isc observed with ascorbic acid on the tear side was equivalent to an increased Na+ flux from the tear to the aqueous humor side. In normal (Cl? present) Conway solution the rise in the Isc seen with ascorbic acid on the aqueous humor side was equal to an increased flux of Cl? from the aqueous to the tear surface. However, when ascorbic acid was present on the opposite, tear, side the increased Isc reflected a rise in both Cl? and Na+ transport, aqueous-to-tear side, and tear-to-aqueous side, respectively. Thiol reagents (tear side), including reduced glutathione (10?5 M), blocked the effect of ascorbic acid (10?3 M) providing they were added to the bathing solution prior to the vitamin. However, they had no effect once the response had been established. The effect of the reduced glutathione appeared to be of a non-competitive nature. Oxidized glutatione (10?4 M) (and cystamine) blocked the effect of ascorbic acid (10?3 M) when present on the tear side prior to the vitamin. However, they also increased the rate of decline of the response when added subsequently to the ascorbic acid. Amiloride (as low as 5·10?9 M), on the tear side but not the aqueous humor side, prevented the response to ascorbic acid but could not reverse it, once it was established. The possible nature of the effect of ascorbic acid is discussed in relation to its pharmacological interactions with thiol and disulfide reagents and amiloride.  相似文献   

2.
J. Coombs  C. Spanis    B. E. Volcani 《Plant physiology》1967,42(11):1607-1611
Rates of photosynthesis, measured by oxygen electrode or by 14CO2 fixation, dark respiration and 32P-phosphate incorporation are reported for the silicon-starvation synchrony of the fresh water diatom Navicula pelliculosa. During late exponential growth the rates were consistent with increase in carbon mass. During silicon starvation, rates of carbon dioxide fixation, oxygen evolution and 32P incorporation fell, and the saturating light intensity decreased from 27,000 lux to 5000 lux. Reintroduction of silicon led to immediate transients in all parameters studied, followed by a prolonged increase in rate of dark respiration and a gradual increase in apparent photosynthesis. During release of daughter cells, the rates of dark respiration decreased as photosynthesis and 32P incorporation increased. These results are discussed in relation to effects of silicon on the energy metabolism of the diatom.  相似文献   

3.
Hg2+ binding to ouabain-sensitive Na+-K+-ATPase of rat platelet membrane was specific with a Ka of 1.3×109 moles and Bmax of 3.8 nmoles/mg protein. The binding of mercury to Na+-K+-ATPase also inhibits the enzyme significantly (P<0.001), which is greater than its ouabain sensitivity. Further in the cytosol of washed platelets conjugation of reduced glutathione (GSH) to Hg2+ is correlated dose dependently (25, 50 and 100 pmoles) to enhanced GSH-S-transferase (GST) activity. It may be concluded from the present in vitro experiments that mercury binds specifically to thiol groups present in the platelet membrane Na+-K+-ATPase, inhibits the enzyme and induces changes in platelet function, namely, platelet aggregation by interfering with the sodium pump.  相似文献   

4.
The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (P<0.001), hepatic reactive oxygen species (P<0.05) and carbonyl group levels (P<0.001), but decreased plasma glutathione levels (P=0.006) in laying hens. These unfavorable changes induced by the oxidized sunflower oil diet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (P<0.05). PQQ.Na2 or vitamin E diminished the oxidized sunflower oil diet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (P<0.001) and maintained these indices at the similar levels to the fresh oil diet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (P<0.05) and tail moment (P<0.05) compared with the fresh oil group. Dietary supplementation of PQQ.Na2 or vitamin E decreased the oxidized oil diet induced DNA tail length and tail moment to the basal levels in fresh oil diet. These results indicate that PQQ.Na2 is a potential antioxidant and is as effective against oxidized oil-related liver injury in laying hens as vitamin E. The protective effects of PQQ.Na2 against liver damage induced by oxidized oil may be partially due to its role in the scavenging of free radicals, inhibiting of lipid peroxidation and enhancing of antioxidant defense systems.  相似文献   

5.
Kluyveromyces fragilis (CBS 397) is a nonhalophilic yeast which is capable of lactose utilization from whey permeate and high glycerol production under anaerobic growth conditions. However, the optimum yields of glycerol (11.6 mg/ml of whey permeate medium) obtained in this study occurred only in the presence of 1% Na2SO3 as a steering agent. The use of other concentrations of Na2SO3, as well as 5% NaCl and 1% ascorbic acid, had no or detrimental effects on cell growth, lactose utilization, and glycerol production. Glycerol yields were greater in cultures grown from a light inoculum of K. fragilis than in cultures in which a resuspended mass of cells was introduced into the medium. The results of this study suggest that this strain of K. fragilis may be useful commercially in the utilization of cheese whey lactose and the concomitant production of glycerol.  相似文献   

6.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium‐AA cotransporters. Recently, two different isoforms of sodium‐vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+‐dependent l ‐ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μm and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area. Acknowledgements: Supported by Grands FONDECYT 1010843 and DIUC‐GIA 201.034.006‐1.4 from Concepción University.  相似文献   

7.
Cell pairing in Tetrahymena takes place among cells that have undergone a prepairing interaction, co-stimulation. Pairing does not take place if co-stimulated cells are washed free of their conditioned medium, but washed co-stimulated cells will pair if restored to either co-stimulation conditioned medium or starvation conditioned medium. This demonstrates a need for an extracellular factor in the pairing reaction.  相似文献   

8.
The effects of different sodium salts on some physiological parameters and antioxidant responses were investigated in a medicinal and aromatic plant, Ocimum basilicum L. (cultivar Fine). Plants were subjected to an equimolar concentration of Na2SO4 (25?mM) and NaCl (50?mM) for 15 and 30?days. Growth, oxidative stress parameters [electrolyte leakage, peroxidation, and hydrogen peroxide (H2O2) concentration], antioxidant enzyme activities [ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and peroxidases (POD, EC 1.11.1.7)], as well as antioxidant molecules [ascorbate and glutathione] were determined. The two salts affected leaf growth rates to the same extent, after 15 or 30?days of treatment, indicating a similar effect of Na2SO4 and NaCl salinity on growth, even if different (enzymatic and non-enzymatic) antioxidant mechanisms were involved in H2O2 detoxification. However, under both salts, the efficiency of the antioxidant metabolism seemed to be sufficient to avoid the deleterious effects of reactive oxygen species (ROS). Indeed, both ion leakage and peroxidation did not change under either Na2SO4 or NaCl salinity. As a whole, these data suggest that a cooperative process between the antioxidant systems is important for the tolerance of Ocimum basilicum L., cv. Fine to Na2SO4 and NaCl salinity.  相似文献   

9.
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.  相似文献   

10.
Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron‑sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.  相似文献   

11.
The effects of oxygen on ascorbic acid concentration and transport were studied in chick embryo (Gallus gallus domesticus). During normoxic incubations, plasma ascorbic acid concentration peaked on fetal day 12 and then fell, before increasing again on day 20 when pulmonary respiration began. In contrast, cerebral ascorbic acid concentration rose after day 6, was maintained at a relatively high level during days 8–18, and then fell significantly by day 20. Exposure of day 16 embryos for 48 h to 42% ambient O2 concentration decreased ascorbic acid concentration by four-fifths in plasma and by one-half in brain, compared to values in normoxic (21% O2) or hypoxic (15% O2) controls. Hyperoxic preincubation of embryos also inhibited ascorbic acid transport, as evidenced by decreased initial rates of saturable and Na+-dependent [14C]ascorbic acid uptake into isolated brain cells. It may be concluded that changes in ascorbic acid concentration occur in response to oxidative stress, consistent with a role for the vitamin in the detoxification of oxygen radicals in fetal tissues. However, changing O2 levels have less effect on ascorbic acid concentration in brain than in plasma, indicating regulation of the vitamin by brain cells. Furthermore, the effect of hyperoxia on cerebral vitamin C may result, in part, from inhibition of cellular ascorbic acid transport.  相似文献   

12.
The growth of the blue-green algae Spirulina platensis and Spirulina maxima, cultured in complete mineral Zarouk medium containing Na+ or Na+-deficient medium, was studied over a period of 24 h. The optical densities of S. platensis and S. maxima cells, determined during the last hour of exposure to sodium deficiency, amounted to 55.6 and 32.6%, respectively, of the optical densities of the same cells grown in complete Zarouk medium. Moreover, the cultures grown in Na+-deficient medium exhibited increased ability to take up sodium (which was low in S. platensis and S. maxima cells cultured in complete mineral medium). It is concluded that the two species studied are characterized by periodic, on the order of minutes, changes in the cellular uptake and release of sodium.  相似文献   

13.
Abstract: Effects of nigericin were investigated in rat brain synaptosomes, cultured neurons, and C6 glioma cells to characterize the relations among ATP synthesis, [Na+]i., [K+]i, and [Ca2+]i, and pH under conditions when [H+]i is substantially increased and transmembrane electrical potential is decreased. Intracellular acidification and loss of K+ were accompanied by enhanced oxygen consumption and lactate production and a decrease in cellular energy level. Changes in the last three parameters were attenuated by addition of 1 mM ouabain. In synaptosomes treated with nigericin, neither respiration nor glycolysis was affected by 0.3 μM tetrodotoxin, whereas 1 mM amiloride reduced lactate production by 20% but did not influence respiration. In C6 cells, amiloride decreased the nigericin-stimulated rate of lactate generation by about 50%. The enhancement by nigericin of synaptosomal oxygen uptake and glycolytic rate decreased with time. However, there was only a small reduction in respiration and none in glycolysis in C6 cells. Measurements with ion-selective microelectrodes in neurons and C6 cells showed that nigericin also caused a rise in [Ca2+], and [Na+]., The increase in [Na+], in C6 cells was partially reversed by 1 mM amiloride. It is concluded that nigericin-induced loss of K+ and subsequent depolarization lead to an increase in Na+ influx and stimulation of the Na+/K+ pump with a consequent rise in energy utilization; that acidosis inhibits mitochondrial ATP production; that a rise in [H+] does not decrease glycolytic rate when the energy state (a fall in [ATP] and rises in [ADP] and [AMP]) is simultaneously reduced; that a fall in [K+], depresses both oxidative phosphorylation and glycolysis; and that the nigericin-induced alterations in ion levels and activities of energy-producing pathways can explain some of the deleterious effects of ischemia and hypoxia.  相似文献   

14.
Garlic, an important flavoring agent and a medicinally useful plant, can take up selenium from its immediate surrounding medium and incorporate it at high concentrations into amino acids and phytochemicals. Selenium, supplied as 0.5, 1.0, 2.0, and 4.0?mg?L?1 Na2SeO3 increased the amino acid, protein, proline, and alliin content of in vitro-grown callus, embryo, plantlet, leaf, and root tissues of Allium sativum L. The enhancement was significant at 2 and 4?mg?L?1. Superoxide dismutase, catalase, and glutathione reductase activities increased in all in vitro-grown tissues and organs with increasing selenium concentrations, but enzyme activity was highest with 4?mg?L?1 selenium.  相似文献   

15.
Electrophysiological recording techniques were used to study the Na+ dependence of currents through amiloride-sensitive sodium channels (ASSCs) in rat taste cells from the fungiform and vallate papillae. Perforated patch voltage clamp recordings were made from isolated fungiform and vallate taste receptor cells (TRCs) and Na+ transport was measured across lingual epithelia containing fungiform or vallate taste buds in a modified Ussing chamber. In isolated fungiform TRCs that contain Na+ currents sensitive to the diuretic amiloride, Na+ ions inhibit their own influx through ASSCs, a process known as sodium self-inhibition. Due to the interaction between self-inhibition and the driving force for Na+ entry, self-inhibition is most evident in whole-cell recordings at Na+ concentrations from 50 to 75 mM. In amiloride-sensitive cells, the Na permeability is significantly higher in extracellular solutions containing 35 mM Na+ than in 70 or 140 mM Na+. Compared with the block by amiloride, the development of self-inhibition is slow, taking up to 15 s to become maximally inhibited. Approximately one third of fungiform TRCs and all vallate TRCs lack functional ASSCs. These amiloride-insensitive TRCs show no signs of self-inhibition, tying this phenomenon to the presence of ASSCs. The sulfhydryl reagent, p-hydroxymercuribenzoate (p-HMB; 200 μM), reversibly removed self-inhibition from amiloride-sensitive Na+ currents, apparently by modifying cysteine residues in the ASSC. Na+ currents in amiloride-insensitive TRCs were unaffected by p-HMB. In sodium transport studies in fungiform taste bud–containing lingual epithelia, ∼40% of the change in short-circuit current (Isc) after addition of 500 mM NaCl to the mucosal chamber is amiloride sensitive (0.5 mM). p-HMB significantly enhanced mucosal NaCl-induced changes in these epithelia at mucosal Na+ concentrations of 50 mM and above. In contrast, the vallate-containing epithelia, which are insensitive to amiloride, showed no enhancement of Isc during p-HMB treatment. These findings suggest that sodium self-inhibition is present in ASSCs in taste receptor cells where it may play a crucial role in performance of salt-sensitive pathways in taste tissue during sodium stimulation. This phenomenon may be important in the process of TRC adaptation, in the conservation of cellular resources during chronic sodium exposure, or in the gustatory response to water.  相似文献   

16.
Superoxide dismutase: a photochemical augmentation assay.   总被引:21,自引:0,他引:21  
Cell envelope vesicles containing bacteriorhodopsin, prepared from Halobacterium halobium, have previously been shown to accumulate glutamate to high concentration gradients when illuminated. This active transport is energized by a sodium gradient (Naout+ ? Nain+), which arises from Na+-efflux coupled to the light-induced H+-gradient. The oxidation of dimethyl phenylenediamine (DPD) by the vesicles also can drive uphill glutamate transport, and such transport is inhibited by KCN, azide, ionophores, or uncouplers. KT for glutamate is 1.4 × 10?7m under these conditions, as compared to 1.3 × 10?7m for light-induced transport. The respiration-induced transport of glutamate is dependent on high Na+ concentrations on the vesicle exterior and requires low Na+ concentrations in the interior. When Na+ of increasing concentrations is included in the vesicles, transport proceeds with increasing lags, similarly to the case of light-driven transport. In vesicles to which DPD is added first, and then KCN at increasing time intervals (5 to 15 min), glutamate transport occurs after the addition of KCN, with increasing rates, even though respiration is inhibited. This indicates that the energy generated by DPD-oxidation is conserved over several minutes. These results suggest that in the case of respiration-dependent glutamate transport the translocation is also driven by a Na+-gradient; thus, there is a single glutamate transport system independent of the source of energy. The generation of such an Na+-gradient during DPD-oxidation implies that the respiration component involved, cytochrome oxidase, is functionally equivalent to bacteriorhodopsin, which acts as a proton pump.  相似文献   

17.
18.
A. A. Rubashkin 《Biophysics》2013,58(5):660-663
A theory of change of the ionic fluxes in the lymphoid cells in their transition from normal to apoptosis we have developed previously is applied to the analysis of Na+/Na+ exchange fluxes in human lymphoid cells U937 exposed to ouabain. We solve a system of equations describing changes in the intracellular concentrations of Na+, K+ and Cl?, membrane potential and cell volume. It is shown that the Na+ influx (I Na/Na) and output flux through the Na+/Na+ tract increased 4 times in 8 h after disconnecting Na+/K+-ATPase for normal cell U937. These fluxes increased 2.6 times for apoptotic cells. The value of I Na/Na after 8 h off pump by ouabain is 97% of the total Na+ input for both cell types. It is concluded that ouabain not only inhibits the Na+/K+-ATPase, but also increases Na+ exchange fluxes through the Na+/Na+ tract, thereby switching sodium transport across the membrane of lymphoid cells to Na+/Na+ equivalent exchange.  相似文献   

19.
Summary The structure of the PAS-positive calcium-sensitive (Ca-s) cells of the pars intermedia was investigated in eels kept in deionized water (DW) or fresh water (FW) supplemented with Ca2+ or Mg2+. Ca2+ (2mM) reduces considerably the response to DW; plasma osmolarity, Na+ and Ca2+ levels are not significantly affected. In eels adapted to DW for 21 or 28 days, showing highly stimulated Ca-s cells, an addition of CaCl2 for 2 days inhibits the release of granules, but does not immediately block their synthesis and the mitotic activity. The nuclear area is reduced, osmolarity and plasma sodium increase, but the rise in calcium is not always significant. Magnesium, at a 10-fold greater concentration than in FW (2 mM), slightly inhibits the release of secretory granules without reducing other indicators of stimulation. In Ca-enriched FW, the Ca-s cells appear inactive. These data show that the PAS-positive cells in the pars intermedia of the eel are calcium-sensitive, similar to those of the goldfish; their role in calcium regulation is briefly discussed.  相似文献   

20.
Decreasing substrate osmotic potential produced in seedlings ofVigna catjang Endl. (cv. Pusa Barsati) proportional decrease in relative water content and leaf water potential, increase in respiration rate, proline content, H2O2 content, and the activities of indole acetic acid oxidase, ascorbic acid oxidase, peroxidase and glycolate oxidase but decrease in catalase activity and glycolate content. Pretreatment with reducing agents like L-cysteine or reduced glutathione (10?3 M) caused lower decrease in the relative water content, leaf water potential and glycolate content and reduced the rise of respiration rate, proline content and H2O2 content and also the activities of aforementioned oxidative enzymes, except catalase activity which was increased. Such treatments also maintained the chlorophyll and protein levels and decreased the tissue permeability. It was concluded that the treatment ofVigna seedlings with reducing agents reduced the deteriorative changes and oxidative processes which are characteristic of water stressed tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号