首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.  相似文献   

2.
Haag ES  Kimble J 《Genetics》2000,155(1):105-116
The Caenorhabditis elegans hermaphrodite is essentially a female that produces sperm. In C. elegans, tra-2 promotes female fates and must be repressed to achieve hermaphrodite spermatogenesis. In an effort to learn how mating systems evolve, we have cloned tra-2 from C. remanei, the closest gonochoristic relative of C. elegans. We found its structure to be similar to that of Ce-tra-2 but its sequence to be divergent. RNA interference demonstrates that Cr-tra-2 promotes female fates. Two sites of tra-2 regulation are required for the onset of hermaphrodite spermatogenesis in C. elegans. One, the MX region of TRA-2, is as well conserved in C. remanei as it is in C. briggsae (another male/hermaphrodite species), suggesting that this control is not unique to hermaphrodites. Another, the DRE/TGE element of the tra-2 3' UTR, was not detected by sequence analysis. However, gel-shift assays demonstrate that a factor in C. remanei can bind specifically to the Cr-tra-2 3' UTR, suggesting that this translational control is also conserved. We propose that both controls are general and do not constitute a novel "switch" that enables sexual mosaicism in hermaphrodites. However, subtle quantitative or qualitative differences in their employment may underlie differences in mating system seen in Caenorhabditis.  相似文献   

3.
Garcia LR  LeBoeuf B  Koo P 《Genetics》2007,175(4):1761-1771
In this study, we addressed why Caenorhabditis elegans males are inefficient at fertilizing their hermaphrodites. During copulation, hermaphrodites generally move away from males before they become impregnated. C. elegans hermaphrodites reproduce by internal self-fertilization, so that copulation with males is not required for species propagation. The hermaphroditic mode of reproduction could potentially relax selection for genes that optimize male mating behavior. We examined males from hermaphroditic and gonochoristic (male-female copulation) Caenorhabditis species to determine if they use different sensory and motor mechanisms to control their mating behavior. Instead, we found through laser ablation analysis and behavioral observations that hermaphroditic C. briggsae and gonochoristic C. remanei and Caenorhabditis species 4, PB2801 males produce a factor that immobilizes females during copulation. This factor also stimulates the vulval slit to widen, so that the male copulatory spicules can easily insert. C. elegans and C. briggsae hermaphrodites are not affected by this factor. We suggest that sensory and motor execution of mating behavior have not significantly changed among males of different Caenorhabditis species; however, during the evolution of internal self-fertilization, hermaphrodites have lost the ability to respond to the male soporific-inducing factor.  相似文献   

4.
Evolution of male longevity bias in nematodes   总被引:4,自引:0,他引:4  
McCulloch D  Gems D 《Aging cell》2003,2(3):165-173
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaphrodites), we compared sex-specific survival in four androdioecious and four dioecious (males and females) nematode species. Contrary to expectation, in all but C. briggsae (androdioecious), males were the longer-lived sex, and this difference was greatest among dioecious species. Moreover, male lifespan was reduced in androdioecious species relative to dioecious species. The evolutionary theory of aging predicts the evolution of a shorter lifespan in the sex with the greater rate of extrinsic mortality. We demonstrate that in each of eight species early adult mortality is elevated in females/hermaphrodites in the absence of food as the consequence of internal hatching of larvae (matricide). This age-independent mortality risk can favour the evolution of rapid aging in females and hermaphrodites relative to males.  相似文献   

5.
Morsci NS  Haas LA  Barr MM 《Genetics》2011,189(4):1341-1346
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.  相似文献   

6.
Chen PJ  Cho S  Jin SW  Ellis RE 《Genetics》2001,158(4):1513-1525
  相似文献   

7.
A recent sexual conflict model posits that a form of intersexual conflict may explain the persistence of males in androdioecious (males + hermaphrodites) populations of animals that are being selected to transition from dioecious (gonochoristic) mating to self‐compatible hermaphroditism. During the evolutionary spread of a self‐compatible hermaphrodite to replace females, the selective pressures on males to outcross are in conflict with the selective pressures on hermaphrodites to self. According to this model, the unresolved conflict interferes with the evolutionary trajectory from dioecy to hermaphroditism, slowing or halting that transition and strengthening the otherwise “transitory” breeding system of androdioecy into a potentially stable breeding strategy. Herein, we assess this model using two dioecious and two androdioecious clam shrimp (freshwater crustaceans) to ask two questions: (1) Have hermaphrodites evolved so that males cannot effectively recognize them?; and (2) Do androdioecious hermaphrodites avoid males? Androdioecious males made more mistakes than dioecious males when guarding potential mates suggesting that androdioecious males were less effective at finding hermaphrodites than dioecious males were at finding females. Similarly, in a three‐chambered experiment, focal hermaphrodites chose to aggregate with their same sex, whereas focal dioecious males chose to aggregate with the alternate sex. Together, these two experiments support the sexual conflict model of the maintenance of androdioecy and suggest that hermaphrodites are indeed evolving to avoid and evade males.  相似文献   

8.
Individuals are regularly documented to consistently differ in their behavioural types (BTs). For example, some individuals are bold whereas others are shy. Within the human personality literature, the big five personality dimensions are commonly documented to be sex-specific with testosterone suggested to underpin traits such as aggressiveness. In non-human animals recent research suggests sex-specific BT expression may be influenced by ecology, mating system and sexual selection. While most research on sex-specific personality has focused on dioecious species, we explore sex differences in BT expression in a sequential hermaphrodite the mangrove killifish. We replicate within 7 isogenic genotypes and investigate sex differences (hermaphrodite and secondary male) in three BTs (exploration, boldness and aggression). This approach allows us to investigate sex differences in BT expression whilst controlling for genetic variation. In this study we find that both secondary males and hermaphrodites are repeatable at the individual level yet there was no difference between the sexes in average BT scores. Furthermore, aggression scores differed between genotypes, and were repeatable at the genotype level, suggesting strong genetic control. Finally, male boldness was significantly more repeatable than hermaphrodites potentially supporting recent proposals relating to sexual selection. We document a behavioural syndrome in male fish with bolder individuals being more aggressive, this behavioural syndrome was not observed however in hermaphrodites. In contrast to a previous developmental study in this species exploration did not correlate with either aggression or boldness in either males or hermaphrodites.  相似文献   

9.
D E Wolf  J A Satkoski  K White  L H Rieseberg 《Genetics》2001,159(3):1243-1257
Datisca glomerata is an androdioecious plant species containing male and hermaphroditic individuals. Molecular markers and crossing data suggest that, in both D. glomerata and its dioecious sister species D. cannabina, sex is determined by a single nuclear locus, at which maleness is dominant. Supporting this conclusion, an amplified fragment length polymorphism (AFLP) is heterozygous in males and homozygous recessive in hermaphrodites in three populations of the androdioecious species. Additionally, hermaphrodite x male crosses produced 1:1 sex ratios, while hermaphrodite x hermaphrodite crosses produced almost entirely hermaphroditic offspring. No perfectly sex-linked marker was found in the dioecious species, but all markers associated with sex mapped to a single linkage group and were heterozygous in the male parent. There was no sex-ratio heterogeneity among crosses within D. cannabina collections, but males from one collection produced highly biased sex ratios (94% females), suggesting that there may be sex-linked meiotic drive or a cytoplasmic sex-ratio factor. Interspecific crosses produced only male and female offspring, but no hermaphrodites, suggesting that hermaphroditism is recessive to femaleness. This comparative approach suggests that the hermaphrodite form arose in a dioecious population from a recessive mutation that allowed females to produce pollen.  相似文献   

10.
Sex ratios are subject to strong frequency-dependent selection regulated by the mating system and the relative male versus female investment. In androdioecious plant populations, where males co-occur with hermaphrodites, the sex ratio depends on the rate of self-fertilization by hermaphrodites and on the relative pollen production of males versus hermaphrodites. Here, we report evolutionary changes in the sex ratio from experimental mating arrays of the androdioecious plant Mercurialis annua. We found that the progeny sex ratio depended strongly on density, with fewer males in the progeny of plants grown under low density. This occurred in part because of a plastic adjustment in pollen production by hermaphrodites, which produced more pollen when grown at low density than at high density. Our results provide support for the prediction that environmental conditions govern sex ratios through their effects on the relative fertility of unisexual versus hermaphrodite individuals.  相似文献   

11.
The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.  相似文献   

12.
The molecular machinery that mediates sperm-egg interactions at fertilization is largely unknown. We identify two partially redundant egg surface LDL receptor repeat-containing proteins (EGG-1 and EGG-2) that are required for Caenorhabditis elegans fertility in hermaphrodites, but not males. Wild-type sperm cannot enter the morphologically normal oocytes produced by hermaphrodites that lack egg-1 and egg-2 function despite direct gamete contact. Furthermore, we find that levels of meiotic maturation/ovulation and sperm migratory behavior are altered in egg-1 mutants. These observations suggest an unexpected regulatory link between fertilization and other events necessary for reproductive success. egg-1 and egg-2 are the result of a gene duplication in the nematode lineage leading to C. elegans. The two closely related species C. briggsae and C. remanei encode only a single egg-1/egg-2 homolog that is required for hermaphrodite/female fertility. In addition to being the first identified egg components of the nematode fertilization machinery, the egg-1 and egg-2 gene duplication could be vital with regards to maximizing C. elegans fecundity and understanding the evolutionary differentiation of molecular function and speciation.  相似文献   

13.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

14.
The soil nematode Caenorhabditis elegans is an example of a species in which self-fertilizing hermaphrodites predominate, but functional males continue to persist--allowing outcrossing to persevere at low levels. Hermaphrodites can produce male progeny as a consequence of sex chromosome non-disjunction or via outcrossing with males. Consequently, the genetics of sex determination coupled with the efficiency by which males find, inseminate and obtain fertilizations with hermaphrodites will influence the frequency at which males and outcrossing occurs in such populations. Behavioural and physiological traits with a heritable basis, as well as ecological characters, may influence male reproductive success and therefore sex ratio. Because sex ratio is tied to male reproductive success, sex ratio greatly affects outcrossing rates, patterns of genetic variation, and the ability of natural selection to act within populations. In this paper we explore the determinants of male frequency in C. elegans with a mathematical model and experimental data. We address the role of the genetic machinery of sex determination via sex chromosome non-disjunction on sex ratio and the influence of physiological components of C. elegans' life history that contribute to variation in sex ratio by way of male reproductive success. Finally, we discuss the short-term and long-term factors that are likely to affect sex ratio and breeding system evolution in species like C. elegans.  相似文献   

15.
Self-fertile hermaphrodites have evolved independently several times in the genus Caenorhabditis [1, 2]. These XX hermaphrodites make smaller sperm than males [3, 4], which they use to fertilize their own oocytes. Because larger sperm outcompete smaller sperm in nematodes [3-5], it had been assumed that this dimorphism evolved in response to sperm competition. However, we show that?it was instead caused by a developmental bias. When we transformed females of the species Caenorhabditis remanei into hermaphrodites [6], their sperm were significantly smaller than those of males. Because this species never makes hermaphrodites in the wild, this dimorphism cannot be due to selection. Instead, analyses of the related nematode Caenorhabditis elegans suggest that this dimorphism might reflect the development of sperm within the distinct physiological environment of the hermaphrodite gonad. These results reveal a new mechanism for some types of developmental bias-the effects of a novel physical location alter the development of ectopic cells in predictable ways.  相似文献   

16.
Androdioecy is a rare breeding system in which low male frequency is expected in populations because males require a strong increase in their fertility to be maintained by selection. Phillyrea angustifolia L. has previously been reported as possibly functionally androdioecious. However, 1&rcolon;1 sex ratios have been reported and suggest functional dioecy. In this article, we compared both pollen tube growth and siring success of male and hermaphrodite pollen in two single-donor pollination experiments. We verified at both pre- and postzygotic levels that hermaphrodites produce functional pollen. Self-incompatibility was also clearly established. However, pollen from hermaphrodites was less efficient than male pollen. The probability of a pollen tube growing through the style was higher for male than for hermaphrodite pollen donors, and males sired twice as many fruits as hermaphrodites. The twofold male advantage in relative fecundity was mainly because of lower pollen fertility of hermaphrodites and possible cross-incompatibility among hermaphrodites.  相似文献   

17.
In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,β-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal β-oxidation produces functionally different ascaroside profiles.  相似文献   

18.
Lana Knoll 《Hydrobiologia》1995,298(1-3):73-81
The clam shrimp,Eulimnadia texana (Crustacea, Conchostraca), is found in freshwater ephemeral environments throughtout the United States. Individual clam shrimp of this species are either hermaphroditic or male, a relatively rare mating system for animals known as androdioecy. Comparison of sex ratios between four neighboring populations ofE. texana in Southern New Mexico showed wide variation in the ratio of males to hermaphrodites with males making up as much as 42% of some populations and not occurring at all within others. Since little is known about the behavior of this species, an ethogram and time budget were prepared based on observations of laboratory populations. Males attempt to clasp hermaphrodites prior to mating. Precopulatory mate guarding occurs in this species. Outcrossing generally occurs during mate guarding and after the hermaphrodite molts. Hermaphrodites, however, seem to control the mating process. Successful mating by males never occured if the hermaphrodite struggled with him; hermaphrodite will self in the presence of males.  相似文献   

19.
Sex‐specific investment in pathogen resistance and immunity has been widely reported in animals and to a much lesser degree in plants. Here, we investigated the incidence of fungal pathogens in dioecious versus hermaphroditic plant species. We found that direct studies on differences between males and females in disease resistance or pathogen incidence were rare or non‐existent in plants, but if we made the prediction that if such differences exist (e.g. if males are less resistant than females), dioecious species should have a higher variation in pathogen diversity than hermaphrodites. Comparative studies on paired dioecious and hermaphrodite species from multiple plant families showed that hermaphrodites had a higher average pathogen load than dioecious species, consistent with the idea that higher outcrossing is beneficial to resistance to a greater diversity of pathogens. There was however no support for dioecious species also having a greater variance in pathogen diversity. Our results are consistent with dioecy providing a benefit in terms of pathogen resistance, but the data were insufficient to resolve if the male and female plants showed sex‐specific investment in resistance.  相似文献   

20.
Smith JR  Stanfield GM 《PLoS genetics》2011,7(11):e1002375
Seminal fluid proteins have been shown to play important roles in male reproductive success, but the mechanisms for this regulation remain largely unknown. In Caenorhabditis elegans, sperm differentiate from immature spermatids into mature, motile spermatozoa during a process termed sperm activation. For C. elegans males, sperm activation occurs during insemination of the hermaphrodite and is thought to be mediated by seminal fluid, but the molecular nature of this activity has not been previously identified. Here we show that TRY-5 is a seminal fluid protease that is required in C. elegans for male-mediated sperm activation. We observed that TRY-5::GFP is expressed in the male somatic gonad and is transferred along with sperm to hermaphrodites during mating. In the absence of TRY-5, male seminal fluid loses its potency to transactivate hermaphrodite sperm. However, TRY-5 is not required for either hermaphrodite or male fertility, suggesting that hermaphrodite sperm are normally activated by a distinct hermaphrodite-specific activator to which male sperm are also competent to respond. Within males, TRY-5::GFP localization within the seminal vesicle is antagonized by the protease inhibitor SWM-1. Together, these data suggest that TRY-5 functions as an extracellular activator of C. elegans sperm. The presence of TRY-5 within the seminal fluid couples the timing of sperm activation to that of transfer of sperm into the hermaphrodite uterus, where motility must be rapidly acquired. Our results provide insight into how C. elegans has adopted sex-specific regulation of sperm motility to accommodate its male-hermaphrodite mode of reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号