首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the inclusion of xylan in a medium for enumeration of total culturable rumen bacteria was investigated. Maximum colony numbers were obtained on a medium, GCSX-2, which contained 0.033% each glucose and cellobiose and 0.067% each soluble starch and xylan. This medium gave higher colony counts than either medium 98-5 of Bryant and Robinson (J. Dairy Sci. 44:1446-1456, 1961), medium 98-5 of Chung and Hungate (Appl. Environ. Microbiol. 32:649-652, 1976), containing an added lucerne (hemicellulose + cellulose) fiber substrate, or medium GCSX-2 with the added lucerne (hemicellulose + cellulose) fraction. The time of collection of rumen fluid influenced the colony counts on the media containing the lucerne fiber substrate but was without effect on medium GCSX-2.  相似文献   

2.
Summary About 500 bifid isolates from 150 samples of bovine rumen liquor were examined for their morphology, physiology and biochemistry. Diagnosis as bifid bacteria was based upon the peculiar pathway of glucose anaerobic metabolism i.e. the fructose-6-phosphate shunt. Four phenetic types were recognized. These types can be differentiated from those found in human habitats because their cell-free extracts are aldolase and HMP dehydrogenases positive: they are potential heterofermenters; furthermore the rumen types are nutritionally different. The distinction of the rumen bifids from the Bifidobacterium species of the intestine of Apis mellifica and Apis indica is still more consistent for a lot of characters. The characters of two rumen types warranted the creation of two new species of the genus Bifidobacterium. One of these, B. globosum n. sp., has a proper morphology, is serologically distinct and has a deoxyribonucleic acid base composition, in % GC, of 64.5. The other, B. ruminale n. sp., found so far only in rumen, is characteristically lactose non fermenter, at variance with all the bifids from human habitats and has peculiar morphological traits. A third type is probably a rough variant of B. ruminale and a fourth is serologically distinct and mannitol fermenter; their taxonomic definition is still, however, premature.This investigation was supported by a grant received from Consiglio Nazionale delle Ricerche (C.N.R.), Roma.  相似文献   

3.
Characteristics of methanogens isolated from bovine rumen   总被引:2,自引:0,他引:2  
Six strains of methanogens were isolated from 10(-8) and 10(-9) ml of bovine rumen contents. All strains had the morphologic and physiologic characteristics of Methanobrevibacter spp. Four strains required coenzyme M; two did not. Growth of all strains either depended on or was stimulated by a mixture of isobutyric, isovaleric, 2-methylbutyric, and valeric acids. None of the strains reacted with antiserum against the type strain of Methanobrevibacter ruminantium.  相似文献   

4.
Characteristics of methanogens isolated from bovine rumen.   总被引:1,自引:2,他引:1       下载免费PDF全文
Six strains of methanogens were isolated from 10(-8) and 10(-9) ml of bovine rumen contents. All strains had the morphologic and physiologic characteristics of Methanobrevibacter spp. Four strains required coenzyme M; two did not. Growth of all strains either depended on or was stimulated by a mixture of isobutyric, isovaleric, 2-methylbutyric, and valeric acids. None of the strains reacted with antiserum against the type strain of Methanobrevibacter ruminantium.  相似文献   

5.
The soluble, lignin-carbohydrate complex (LCC) from the rumen fluid of steers fed a diet of pure spear grass (Heteropogon contortus) has been purified by gel filtration. The purified LCC contained 7.4% of carbohydrate which, on hydrolysis, gave d-glucose, d-xylose, l-arabinose, l-rhamnose, and traces of d-galactose and d-mannose. The structure of the LCC was examined by methylation analysis, using g.l.c.-m.s. for the unequivocal classification of the sugar derivatives. d-Glucose, d-xylose, and l-rhamnose were shown to be glycosidically linked to lignin. Some of the d-glucosyl residues carry other (1→4)-linked d-glucose units, and some of the d-xylosyl residues bear other (1→4)-linked d-xylose units and (1→3)-linked l-arabinofuranosyl groups. The major carbohydrate component is a single d-glucopyranosyl group. The LCC was subjected to various chemical treatments in an investigation of the chemical nature of the bonding between lignin and the carbohydrates. d-Glucose could be enzymically hydrolyzed from the LCC, but only with a very high concentration of β-d-glucosidase. The presence of lignin in rumen LCC has been confirmed by nitrobenzene oxidation, vanillin and syringaldehyde being identified by g.l.c.-m.s. as oxidation products from both the original spear grass and the LCC.  相似文献   

6.
7.
目的初步筛选牛瘤胃中纤维素降解菌。方法分别采用基本培养基(牛肉膏蛋白胨培养基、马丁培养基),利用好氧、兼性和厌氧3种不同的培养方法进行初选,初步分离牛瘤胃中的细菌与真菌,再通过复选培养基(加入微晶纤维素),筛选降解纤维素的菌种。结果筛选分离出降解纤维素的1株厌氧细菌和1株厌氧真菌。结论此实验方法简单易行,能够有效地从牛瘤胃中筛选出生长良好的纤维素降解菌。  相似文献   

8.
9.
This study investigated the aerobic and anoxic biodegradation of four estrogens [estrone (E1), estradiol (E2), estriol (E3), and the synthetic 17α-ethinylestradiol (EE2)] in microcosms constructed with marine sand and ulftrafiltered (UF) secondary effluent. Three estrogen-degrading bacteria, LHJ1, LHJ3, and CYH, were isolated. Based on gram-stain morphology and 16S rRNA sequence homology, LHJ1 and LHJ3 belong to the genus Acinetobacter and Agromyces, respectively; CYH matched to 95% with the genus Sphingomonas. Aerobically LHJ3 degrades E3, CYH degrades E1, and all three isolates oxidize E2 to E1. Under anoxic conditions, CYH degrades E1 and LHJ3 degrades E2, whereas E3 and EE2 were not degraded by the three isolates; EE2 was transformed in microcosms incubated with site ground water. The degradation kinetics of E1 and E2 by CYH and E2 by LHJ3 under aerobic conditions was linearly correlated with the initial concentration, which ranged from 50 to 2,000 μg/l. The degradation of E1 by CYH under anoxic conditions followed Michaelis–Menten kinetics. 16α-Hydroxyestrone was found to be a transient transformation product of E3 under aerobic conditions.  相似文献   

10.
The protease activities of 212 strains of rumen bacteria isolated from New Zealand cattle grazing pasture were measured. Thirty-seven per cent of strains had activity greater than or equal to the proteolytic rumen bacterium Prevotella ruminicola and 43 of these isolates were identified by morphology, carbon source utilization, Gram stain, biochemical tests and fermentation end-product analysis. Hierarchical Cluster Analysis showed that the strains formed four clusters: cluster A contained 26 strains and clustered with a reference strain of Streptococcus bovis; cluster C contained three strains and clustered with a reference strain of Butyrivibrio fibrisolvens , while clusters B (10 strains) and D (three strains) did not cluster with any of the remaining rumen bacterial type strains. Further tests identified strains of cluster B as Eubacterium budayi , while cluster D strains most closely resembled B. fibrisolvens and were described as B. fibrisolvens -like. An unclustered strain, C21a, was identified as P. ruminicola. The significance of these proteolytic bacterial populations is discussed in relation to protein breakdown in New Zealand ruminants.  相似文献   

11.
12.
A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.  相似文献   

13.
AIM: To screen rumen bacterial cultures and fresh ruminal isolates for indole and skatole production. METHODS AND RESULTS: Culture collection strains and fresh bacterial isolates from rumen contents of sheep and dairy cows were screened for the production of indolic compounds. Clostridium aminophilum FT, Peptostreptococcus ssp. S1, Fusobacterium necrophorum D4 produced indole and Clostridium sticklandii SR produced indoleacetic acid. Fresh isolates from sheep (TrE9262 and TrE7262) and dairy cows (152R-1a, 152R-1b, 152R-3 and 152R-4) produced indole, indolepropionic acid, tryptophol and skatole from the fermentation of tryptophan and indoleacetic acid. Glucose altered the indolic compounds produced in some, but not all, isolates. TrE7262 and 152R-4 were identified as Clostridium sporogenes and 152R-1b as a new Cl. aminophilum strain. Isolates TrE9262, 152R-1a and 152R-3 were not closely related to any described species but belong to Megasphaera, Prevotella and Actinomyces genera, respectively. CONCLUSIONS: Rumen bacteria that produced a range of indolic compounds were identified. Some isolates are distinct from the previously described bacteria and may represent novel species. SIGNIFICANCE AND IMPACT OF THE STUDY: These observations will contribute to understanding skatole and indole formation in the rumen and will lead to methods that control the formation of indolic compounds in pasture-grazed ruminants.  相似文献   

14.
15.
The structures of water-soluble birch and beech xylans, extracted from holocellulose using dimethyl sulfoxide, were determined employing 1H and 13C NMR spectroscopy together with chemical analysis. These polysaccharides were found to be O-acetyl-(4-O-methylglucurono)xylans containing one 4-O-methylglucuronic acid substituent for approximately every 15 D-xylose residues. The average degree of acetylation of the xylose residues in these polymers was 0.4. The presence of the structural element -->4)[4-O-Me-alpha-D-GlcpA-(1-->2)][3-O-Ac]-beta-D-Xylp-(1--> was demonstrated. Additional acetyl groups were present as substituents at C-2 and/or C-3 of the xylopyranosyl residues. Utilizing size-exclusion chromatography in combination with mass spectroscopy, the weight-average molar masses (and polydispersities) were shown to be 8000 (1.09) and 11,100 (1.08) for birch and beech xylan, respectively.  相似文献   

16.
17.
The Ussing chamber technique was used for studying unidirectional fluxes of 14C-butyrate across the bovine rumen epithelium in vitro. Significant amounts of butyrate were absorbed across the bovine rumen epithelium in vitro, without any external driving force. The paracellular pathway was quantitatively insignificant. The transcellular pathway was predominately voltage-insensitive. The serosal to mucosal (SM) pathway was regulated by mass action, whereas the mucosal to serosal (MS) pathway further includes a saturable process, which accounted for 30 to 55% of the MS flux. The studied transport process for 14C-butyrate across the epithelium could include metabolic processes and transport of 14C-labelled butyrate metabolites. The transport of butyrate interacted with Na+, Cl- and HCO3-, and there was a linear relationship between butyrate and sodium net transport. Lowering the sodium concentration from 140 to 10 mmol l-1 decreased the butyrate MS flux significantly. Amiloride (1 mmol l-1) did, however, not reduce the butyrate flux significantly. Chloride concentration in itself did not seem to influence the transport of butyrate, but chloride-free conditions tended to increase the MS and SM flux of butyrate by a DIDS-sensitive pathway. DIDS (bilateral 0.5 mmol l-1) did further decrease the butyrate SM flux significantly at all chloride concentrations. Removing bicarbonate from the experimental solutions decreased the MS and increased the SM flux of butyrate significantly, and abolished net butyrate flux. There were no significant effects of the carbonic anhydrase inhibitor Acetazolamide (bilateral 1.0 mmol l-1). The results can be explained by a model where butyrate and butyrate metabolites are transported both by passive diffusion and by an electroneutral anion-exchange with bicarbonate. The model couples sodium and butyrate via CO2 from metabolism of butyrate, and intracellular pH.  相似文献   

18.
Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml?1. C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.  相似文献   

19.
AIMS: The aim of the study was to characterize a spirochaete isolated from the lesions of a cow with digital dermatitis (DD). METHODS AND RESULTS: The characterization was on the basis of its light and electron microscopic appearance, enzymic profile and DNA sequence analysis of its flagellin and 16S rRNA genes. The spirochaete was 6-8-microm long and 0.2-0.3 microm in diameter, and possessed seven to eight periplasmic flagella, with three to five helical turns. The enzymic profile of the bacterium resembles, but is not identical to that of Treponema brennaborense. Its flagellin gene sequence was identical to that of Treponema phagedenis but distinct from that of an ovine spirochaete. Analysis of a 1477-bp region of the 16S rRNA genes indicated that this is a Treponema species and that it is indistinguishable from some isolates made from cases of bovine DD in the United States. Finally, electron microscopy revealed the presence of myovirus-like bacteriophage particles in all cultures of the treponeme examined. CONCLUSIONS: The spirochaete isolate was identified as a Treponema species closely related to some isolates from the United States (by 16S rDNA) and to T. phagedenis (by flagellin gene sequence) and is associated with bacteriophage particles. SIGNIFICANCE AND IMPACT OF THE STUDY: The fact that the isolates with the same or very similar 16S rDNA sequences have been obtained from cases of bovine DD in cattle in different countries at different times, lends further support to the hypothesis that treponemes play a role in the pathogenesis of this disease.  相似文献   

20.
AIMS: To investigate biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria, and to identify the fungus with the fastest biohydrogenation rate. METHODS AND RESULTS: Biohydrogenation of linoleic acid by mixed rumen fungi and mixed rumen bacteria were compared in vitro. With mixed rumen bacteria, all biohydrogenation reactions were finished within 100 min of incubation and the end product of biohydrogenation was stearic acid. With mixed rumen fungi, biohydrogenation proceeded more slowly over a 24-h period. Conjugated linoleic acid (CLA; cis-9, trans-11 C18 : 2) was an intermediate product, and vaccenic acid (VA; trans-11 C18 : 1) was the end product of biohydrogenation. Fourteen pure fungal isolates were tested for biohydrogenation rate. DNA sequencing showed that the isolate with the fastest rate belonged to the Orpinomyces genus. CONCLUSIONS: It is concluded that rumen fungi have the ability to biohydrogenate linoleic acid, but biohydrogenation is slower in rumen fungi than in rumen bacteria. The end product of fungal biohydrogenation is VA, as for group A rumen bacteria. Orpinomyces is the most active biohydrogenating fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that rumen fungi can biohydrogenate fatty acids. Fungi could influence CLA content of ruminant products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号