首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditioned serum-free medium of Ob17 cells transformed by the middle-T-only gene of polyoma virus (Ob17MT cells) is able to support growth and adipose conversion of the parental Ob17 cells. Conditioned media from 3T3-F442A cells (untransformed preadipocyte clonal line) and MTT4 cells (middle-T-transformed non-preadipocyte clonal line) are inactive. The serum-free conditioned medium of Ob17MT cells is also active on growth and adipose conversion of 3T3-F442A cells. The morphological differentiation of Ob17 cells is accompanied by the expression of early (lipoprotein lipase, LPL) and late (glycerol-3-phosphate dehydrogenase, GPDH) biochemical markers of adipose conversion. Bio-Gel P-60 chromatography and SDS-PAGE have allowed characterization of a mitogenic fraction of apparent MW approximately equal to 28 Kd distinct from an adipogenic fraction of apparent MW less than 10 Kd. This adipogenic fraction is only required for the acquisition of the GPDH activity and is therefore active on terminal differentiation.  相似文献   

2.
Differentiation of rabbit adipocyte precursor cells in a serum-free medium   总被引:1,自引:0,他引:1  
Summary A serum-free, hormone-supplemented medium containing insulin, transferrin, and triiodothyronine (ITT medium), able to support differentiation of rat adipose precursor cells, has been used to study the regulation of the development of adipocytes in the rabbit. Adipose conversion was assessed by the appearance of glycerol-3-phosphate dehydrogenase activity. Stromal-vascular cells from rabbit perirenal adipose tissue differentiated to a very low extent or not at all in ITT medium. Supplementation of ITT medium with growth hormone or fibroblast growth factor did not increase the proportion of differentiated cells. In contrast, rabbit stromal-vascular cells were able to differentiate in ITT medium supplemented with glucocorticoids (dexamethasone, corticosterone) whereas sex steroids (β-estradiol, testosterone, progesterone) did not affect the differentiation process. In the presence of both dexamethasone and insulin, 20 to 50% of rabbit stromal-vascular cells differentiated into adipocytes within 2 wk of culture. The stimulatory actions of dexamethasone or insulin were dose-dependent. Insulin-like growth Factor-I (IGF-I), did not replace insulin under our culture conditions and had only a slight effect when added along with dexamethasone (100 nM) and insulin (1.7 nM). The results suggest that glucocorticoids, in association with insulin, may play an important role in the development of adipocytes from rabbit precursor cells. This work was supported by grant 4388 from the Institut National de la Recherche Agronomique, France.  相似文献   

3.
The effects of dexamethasone (DEX) on adipose precursor cells from rat adipose tissue were studied in primary culture. When added from the beginning of culture in media containing untreated fetal calf serum (SM), serum treated with charcoal to remove steroid hormones (CSM), or serum-free medium (SFM), DEX inhibited cellular growth. Lipoprotein lipase (LPL) as well as glycerophosphate dehydrogenase (GPDH) activities, markers of cellular differentiation, were also inhibited, except in CSM where LPL was stimulated. When added after cellular confluence, however, DEX had opposite effects and now stimulated cellular differentiation. This effect was highly dependent on insulin. These studies demonstrate that DEX affects adipose precursor cells in several ways, depending on the type of culture medium, the time period of exposure, and the presence of insulin.  相似文献   

4.
Stromal-vascular cells from adipose tissue of pigs 5-7 days of age were grown in serum for 2-3 days and switched to serum-free (insulin, transferrin and selenium) conditions +/- test hormones for 6-7 days. The interaction of dexamethasone (DEX) and human growth hormone (hGH) was evaluated since glucocorticoids augment and hGH antagonizes the effect of insulin. Low levels (1-10 nM) of DEX with insulin doubled (p less than 0.05) specific activity of glycerol phosphate dehydrogenase (GPDH) and doubled (p less than 0.05) the number of detectable fat cells relative to insulin alone. DEX with insulin enhanced the morphological differentiation of preadipocytes and markedly increased fat cell cluster numbers in the presence of hGH. Furthermore, 1-10 nM of DEX partially blocked (p greater than 0.05) the inhibitory effect of 10 nM hGH on GPDH activity, but 1-100 nM DEX had no effect (p greater than 0.05) on the ability of hGH to compromise lipid deposition. DEX alone (no insulin or hGH) induced the appearance of esterase-reactive but lipid-free cells. Cells with these characteristics were increased in number by DEX in the presence of hGH but were nearly absent in the presence of insulin and DEX. Therefore, transient exposure to GH in vivo may have no permanent effect on adipose tissue development in the continued presence of glucocorticoids.  相似文献   

5.
The spontaneous secretion of lipoprotein lipase has been examined in adipose cells of mouse Ob17, Ob17SA and 3T3-F442A clonal lines as well as in rat adipose cells in primary culture. Striking differences are observed both in serum-free and serum-supplemented media, rat adipose cells and 3T3-F442A cells being the most active. Insulin from 10(-11) M to 10(-9) M was able to modulate the rate of LPL secretion from 2- to 4-fold. The stimulatory effect of insulin on this process occurred within 30 min in cells treated or not with cycloheximide. It is concluded that insulin is able to modulate the rate of LPL secretion independently of the synthesis of new enzyme molecules on a short-term basis and within a physiological range of concentrations.  相似文献   

6.
Summary The mouse adipogenic cell line 1246 which possesses both insulin and insulin-like growth factor I (IGF-I) receptors was used to investigate the role of IGF-I and insulin on the proliferation of adipocyte precursors and their differentiation into mature adipocytes. Results indicate that both insulin and IGF-I stimulate the proliferation of the 1246 adipocyte precursors with IGF-I being slightly more potent than insulin. Dose-response studies indicated that both polypeptides acted at physiological concentrations corresponding to binding to their own receptors. In contrast, comparison of insulin and IGF-I capacity to stimulate terminal adipose differentiation indicated that only insulin was active when added at physiological concentrations. IGF-I could not stimulate adipocyte differentiation except at supraphysiological concentrations (100 ng/ml and above) permitting its binding to the insulin receptors on 1246 cells. Time course study of expression of early and late markers of adipose differentiation indicated that the induction of markers such as adipose differentiation-related protein (ADRP), lipoprotein lipase (LPL) and fatty acid binding protein (FAB) took place even in the absence of insulin. However, the level of early and late differentiation markers decreased to a level below the one found in undifferentiated cells when cells had been maintained in the absence of insulin after differentiation had been initiated. These data indicate that although insulin is not necessary for the early onset of the adipose differentiation program, it is stringently required for the maintenance of the adipocyte phenotype and cannot be substituted by IGF-I.  相似文献   

7.
The cyclic adenosine-monophosphate (cAMP) pathway is generally recognized as one of the essential pathways for the adipose conversion of rodent preadipocytes in vitro. However, divergent effects of cAMP on adipocyte differentiation have also been reported. Since there is very little data on non-rodent preadipose cells, the aim of the present work was to analyze the effects of classic activators of the cAMP pathway on the proliferation and differentiation of porcine preadipocytes grown either in serum-free or in serum-containing medium. In both media, the addition of 10 microM forskolin from day 1 after cell plating to day 3 or 7 did not affect cell proliferation. Such stimulations also failed to enhance preadipocyte differentiation, as assessed by the measurement of lipoprotein lipase (LPL) and glycerol 3-phosphate dehydrogenase (GPDH) activities, two markers of adipose conversion. Similar results were obtained when various concentrations of forskolin (0.1 nM-100 microM) were added for 2 days either during the growth phase (days 1-3) or after confluence (days 5-7). Addition of methylisobutylxanthine (MIX) or 8-bromo-cAMP was also found inefficient to stimulate porcine preadipocytes differentiation clearly. By contrast, post-confluence treatment of the murine 3T3-L1 cell line with either forskolin or MIX markedly enhanced lipid accumulation and led to a dramatic increase in GPDH activity (up to 120 times). This indicates that similar culture conditions are adipogenic for the murine 3T3-L1 preadipocytes but not for porcine preadipose cells. In summary, this work clearly highlights the finding that porcine preadipocytes do not respond to classic activators of the cAMP pathway like rodent cells do. This calls in question again the general model proposed for the action of this pathway in adipose conversion and suggests that the mechanisms regulating adipocyte differentiation may differ among species.  相似文献   

8.
The stroma-vascular fraction (SVF) of inguinal and epididymal fat pads of 4 week-old rats was studied by electron microscopy. Among the various cell types, endothelial cells and preadipocytes were found in both SVF, while mesothelial cells were only detected in the epididymal SVF. The resulting heterogeneity of primary culture and the adipoconversion of the fat cell precursors were studied in a serum-supplemented medium enriched with insulin (14.5 nM) and exogenous triglycerides. Despite the heterogeneity of the inoculum, the primary cultures were rather homogeneous, fat cell precursors being the main cell type. Distinctive contaminant fibroblast-like cells were observed in both cultures, whereas epithelial-like cells, which correspond most probably to mesothelial cells, were only found in epididymal cultures. Differentiation of fat cell precursors was assessed by the appearance of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH). LPL activity was found in the same level in cells of both deposits while GPDH activity was elevated in inguinal vs epididymal derived stroma-vascular cells. The different adipose conversion pattern of both cultures was confirmed by morphological quantification: the maturation of epididymal fat cell precursors was faster but less extensive. These differences could be related mainly to regional localization rather than to different maturation of the two fat deposits.  相似文献   

9.
The terminal adipose differentiation of Ob1771 cells, characterized by glycerol-3-phosphate dehydrogenase activity and triacylglycerol accumulation, was studied in serum-free hormone-supplemented medium containing growth hormone, tri-iodothyronine, insulin, transferrin and fetuin. Arachidonic acid was able to substitute for a crude adipogenic fraction isolated from fetal bovine serum but not for growth hormone or tri-iodothyronine. Arachidonic acid was also able to increase in a rapid and dramatic manner cyclic AMP production; moreover it was able to amplify the adipose conversion promoted by other agents elevating cyclic AMP concentrations and to induce inositol phospholipid breakdown. Both phorbol 12-myristate 13-acetate, a protein kinase C activator and ionomycin, a Ca2+-mobilizing agent, showed potent synergy with agents elevating cyclic AMP concentrations for the promotion of adipose conversion, whereas 8-bromo cyclic GMP and 4 alpha-phorbol 12,13-dibutyrate were ineffective. The triggering of both the cyclic AMP and inositol phospholipid pathways was accompanied by a single round of cell division, and within a few days all the cells became differentiated. Similar results were obtained, after exposure to arachidonic acid, with preadipose 3T3-F442A cells and with rat adipose precursor cells in primary culture. The availability of arachidonic acid from intracellular stores and/or of exogenous origin should play a major role for the onset of critical mitoses leading to terminal differentiation in pre-adipose cells.  相似文献   

10.
Using a new serum-free primary culture system, we have previously reported genotypic differences between adipoblasts derived from the epididymal adipose deposit of lean and obese 8-week-old Zucker and Wistar Diabetic Fatty (WDF) rats (15). In these strictly controlled culture conditions, obese-derived adipoblasts expressed low levels of the late markers of differentiation (lipid accumulation, GPDH). In order to further characterize obese-derived adipoblasts and analyze the critical relationship between growth and differentiation, growth arrest was induced in leanand obese-derived cultures using sodium butyrate treatment. Addition of 2.5 mM sodium butyrate to the serum-free medium from day 1 reduced markedly the growth of lean as well as obese-derived cells. Adipoconversion of lean-derived adipoblasts was not altered, similar levels of LPL and GPDH activities being obtained in control and butyrate-treated groups. By contrast, a marked increase in both activities was observed in obese-derived cultures, restoring the level of both markers of differentiation to the lean level. Similar results were obtained with adipoblasts derived from subcutaneous inguinal (ING) fat pad of obese Zucker as well as adipoblasts derived from ING and EPI fat deposits from obese WDF rats. Taken together, these results suggest that adipose deposits of these genetically obese rats contain a specific adipoblast population which differs from lean-derived adipoblasts in respect to its adipoconversion capacity andlor its stage of commitment to differentiation.  相似文献   

11.
A reproducible cell culture system is described that allows the study of adipose conversion in fibroblast-like cells isolated by collagenase digestion of epididymal and perirenal adipose tissue from male rats weighing 70-200 g. Adipose conversion as measured by lipid accumulation and increase in glycerophosphate dehydrogenase (GPDH) activity during differentiation strongly depends on the density at which cells are inoculated and starts only when cells are confluent and when physiological amounts of corticosterone and insulin are added. beta-Estradiol, testosterone, thyroxine, triiodothyronine, and growth hormone do not affect the differentiation process. Methylisobutylxanthine added during the first 2 days after confluence, added with insulin and corticosterone, potentiates the effect of insulin on GPDH activity and accelerates triglyceride accumulation. The effect of methyl-isobutylxanthine seems to be mediated by increased cyclic AMP concentrations, inasmuch as it may be replaced by forskolin.  相似文献   

12.
A culture system for 3T3-L1 preadipocytes based on a serum-free chemically defined medium containing fetuin, transferrin, and pantothenate is described. In this system, adipose conversion depends on the following conditions. 1) In the presence of high insulin concentrations (1 microM), addition of corticosterone together with 1-methyl-3-isobutylxanthine (MIX) for not more than the first 4 days after confluence to the culture medium induces maximal adipose conversion within 12-14 days. MIX may be replaced by forskolin or permeable analogues of cAMP, indicating that its effect is due to elevated cellular cAMP levels. 2) At low insulin concentrations (1 nM), adipose conversion is reduced. Growth hormone or insulin-like growth factor I together with epidermal growth factor have to be present as a medium supplement together with corticosterone and MIX to get maximal adipose conversion. 3) The induction of adipose conversion by corticosterone and MIX in the presence of either high insulin concentrations or insulin-like growth factor I together with epidermal growth factor is accompanied by post-confluent mitoses. Inhibitors of DNA replication markedly reduce adipose conversion. Fibroblast growth factor and platelet-derived growth factor, although acting as potent mitogens on 3T3-L1 cells, do not support adipose conversion induced by corticosterone and MIX.  相似文献   

13.
alpha-Thrombin alone is able to stimulate DNA synthesis reinitiation of G0-arrested Chinese hamster lung fibroblasts (CC139) as well as continued growth of these cells in serum-free medium. Although insulin at high concentrations (1-10 micrograms/ml) is not intrinsically mitogenic for these cells, it potently enhances the growth-promoting action of thrombin. The generation time of CC139 cells in the defined medium, transferrin, alpha-thrombin, insulin, is around 15 h. To determine whether this effect of insulin is mediated via putative receptors for the insulin-like growth factors (IGFs) on these cells, we examined the abilities of two IGFs, Multiplication-Stimulating Activity (MSA) and IGF-I, to potentiate the thrombin-induced reinitiation of DNA synthesis. Both IGFs were found to be as effective as insulin for this biological effect; however, much lower concentrations were required to elicit half-maximal response, 100 ng/ml of MSA and 30 ng/ml of IGF-I. Detailed binding studies using 125I-labelled insulin, MSA, and IGF-I revealed that CC139 cells specifically bind all three polypeptides with IC50 values for the corresponding ligands of 1-2 ng/ml, 80-100 ng/ml, and 30-40 ng/ml, respectively. 125I-MSA binding was insulin-insensitive, whereas insulin did compete with 125I-IGF-I for binding to CC139 cells. These results indicate that CC139 cells possess at least two types of IGF receptors, an insulin-insensitive IGF receptor with high affinity for MSA which apparently mediates its biological effect, and an insulin-sensitive IGF-I receptor. Insulin appears to exert its mitogen-potentiating activity in CC139 fibroblasts by interacting with the IGF-I receptor.  相似文献   

14.
Prostacyclin as a potent effector of adipose-cell differentiation.   总被引:7,自引:0,他引:7       下载免费PDF全文
The terminal differentiation of Ob1771 pre-adipose cells induced by arachidonic acid in serum-free hormone-supplemented medium containing insulin, transferrin, growth hormone, tri-iodothyronine and fetuin (5F medium) was strongly diminished in the presence of inhibitors of prostaglandin synthesis, namely aspirin or indomethacin. Carbaprostacyclin, a stable analogue of prostacyclin (prostaglandin I2) known to be synthesized by pre-adipocytes and adipocytes, behaved as an efficient activator of cyclic AMP production and was able, when added to 5F medium, to mimic the adipogenic effect of arachidonic acid. Prostaglandins E2, F2 alpha and D2, unable to affect the cyclic AMP production, failed to substitute for carbaprostacyclin. However, prostaglandin F2 alpha, which is another metabolite of arachidonic acid in pre-adipose and adipose cells, able to promote inositol phospholipid breakdown and protein kinase C activation, potentiated the adipogenic effect of carbaprostacyclin. In addition, carbaprostacyclin enhanced both a limited proliferation and terminal differentiation of adipose precursor cells isolated from rodent and human adipose tissues maintained in primary culture. These results demonstrate the critical role of prostacyclin and prostaglandin F2 alpha on adipose conversion in vitro and suggest a paracrine/autocrine role of both prostanoids in the development of adipose tissue in vivo.  相似文献   

15.
We studied the commitment of 3T3-F442A cells during stimulation with adipogenic serum or growth hormone. Confluent 3T3-F442A preadipocytes were incubated with adipogenic medium for increasing times; the number of adipose clusters, GPDH activity, and lipid accumulation were evaluated. Results show that cell commitment took place during the first 24-36 h after stimulation under adipogenic conditions. Then, cultures underwent a 2-fold increase in total cell number through selective multiplication of committed cells, followed by a dramatic decrease in colony-forming ability and 300- to 1000-fold raise in GPDH activity. Cell commitment was not modulated by insulin, but this hormone stimulated clonal expansion of committed cells and lipogenesis. Commitment was inhibited by TNF-alpha at concentrations as low as 5 ng/ml, and by retinoic acid. The results show that TNF-alpha inhibits adipose conversion at two different levels: at concentrations as low as 5 ng/ml, it blocks commitment, and at concentrations of 100 ng/ml or higher the cytokine seems to block mitotic expansion and other steps of differentiation after cell commitment. The identification of a specific time for cell commitment would allow the study of the early genes that might regulate cell reprogramming into adipocytes.  相似文献   

16.
Several studies have suggested that insulin and glucose increase adipose tissue lipoprotein lipase (LPL). To study the mechanism of the glucose-induced stimulation of LPL, the effects of glucose and glycosylation were examined in primary rat adipocyte cultures. In cells cultured in the presence of 1 mg/ml glucose, a 55-kDa LPL protein was synthesized and secreted into the medium, whereas cells cultured in glucose-free medium synthesized a 49-kDa form of LPL which was not secreted. The treatment of the mature 55-kDa form of LPL with peptide:N-glycosidase-F resulted in the formation of a 49-kDa form of LPL. When cells were cultured in the presence of tunicamycin, a 49-kDa form of LPL was synthesized by the cells but was not secreted. In addition, LPL activity was reduced by 90% when glycosylation was blocked by either tunicamycin or glucose deprivation. LPL synthetic rate was examined in cells cultured in a spectrum of glucose concentrations. LPL synthetic rate increased directly with medium glucose concentration and was decreased 80% in the absence of glucose compared to the synthetic rate in the presence of 1 mg/ml glucose. In addition, LPL synthetic rate in the presence of insulin was approximately 200% of the synthetic rate in untreated control cells at all glucose concentrations and even in the absence of glucose. In spite of the effect of glucose on LPL synthetic rate, glucose had no effect on the level of LPL mRNA. In contrast, the mRNA for the 78-kDa glucose-regulated protein (GRP78) was increased in adipocytes cultured in glucose-free medium. In summary, glucose was essential for glycosylation of LPL, and glycosylation was essential for LPL catalytic activity and secretion. In addition, glucose stimulated LPL synthetic rate and potentiated the stimulatory effects of insulin, but had no specific effect on LPL mRNA. Whereas insulin stimulates LPL by increasing the level of LPL mRNA, glucose stimulates LPL translation and post-translational processing.  相似文献   

17.
We studied the commitment of 3T3-F442A cells during stimulation with adipogenic serum or growth hormone. Confluent 3T3-F442A preadipocytes were incubated with adipogenic medium for increasing times; the number of adipose clusters, GPDH activity, and lipid accumulation were evaluated. Results show that cell commitment took place during the first 24-36 h after stimulation under adipogenic conditions. Then, cultures underwent a 2-fold increase in total cell number through selective multiplication of committed cells, followed by a dramatic decrease in colony-forming ability and 300- to 1000-fold raise in GPDH activity. Cell commitment was not modulated by insulin, but this hormone stimulated clonal expansion of committed cells and lipogenesis. Commitment was inhibited by TNF-α at concentrations as low as 5 ng/ml, and by retinoic acid. The results show that TNF-α inhibits adipose conversion at two different levels: at concentrations as low as 5 ng/ml, it blocks commitment, and at concentrations of 100 ng/ml or higher the cytokine seems to block mitotic expansion and other steps of differentiation after cell commitment. The identification of a specific time for cell commitment would allow the study of the early genes that might regulate cell reprogramming into adipocytes.  相似文献   

18.
IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes.   总被引:18,自引:0,他引:18  
The expression and secretion of IGF-I and IGFBP-3 were investigated in cultured human preadipocytes and in in vitro differentiated adipocytes derived from human subcutaneous adipose tissue under chemically defined culture conditions. Human preadipocytes expressed mRNAs for IGF-I and IGFBP-3 and secreted the corresponding proteins into the culture medium as measured by sensitive radioimmunoassays. In human adipocytes; specific mRNA-expression was comparable to that found in preadipocytes, but IGF-I secretion was increased 10-fold (3.87 +/- 0.69 vs. 0.41 +/- 0.11 ng/ml/10(6) cells/48 hrs, p < 0.05) and IGFBP-3 secretion 2.5-fold (7.34+/-1.15 vs. 3.27+/-0.38 ng/ml/10(6) cells/48 hrs, p<0.05) in the presence of adipogenic medium probably resulting in an increase of unbound IGF-I. Under serum-free, chemically defined conditions human growth hormone (hGH) and insulin were found to be positive regulators and cortisol was found to be a negative regulator of IGF-I and IGFBP-3 secretion in preadipocytes. In cultured human adipocytes, hGH showed no effect on IGF-I and IGFBP-3 secretion, whereas insulin stimulated and cortisol inhibited the secretion of both proteins. We conclude that IGF-I and IGFBP-3 may not only exert their actions in human adipose tissue via circulation, but also in an auto/paracrine way.  相似文献   

19.
The present study examined the effects of both insulin and insulin-like growth factor-I (IGF-I) on cell division and specific functions of cultured adrenocortical cells from 100- to 122-day-old ovine fetuses. When culture was performed in a serum-free medium containing transferrin and ascorbic acid, the number of cells increased only slightly (1.2-fold) over a 4-day period. Addition of insulin or IGF-I in the culture medium enhanced the number of cells counted on Day 5. The effect of both peptides was dose-dependent, but 10 ng/ml IGF-I was as potent as 10 micrograms/ml insulin. The acute cyclic adenosine 3',5'-monophosphate (cAMP) and steroidogenic responses to adrenocorticotropin (ACTH1-24) decreased in fetal cells cultured in the absence of insulin or ACTH. Insulin at micromolar concentrations not only prevented this decrease but enhanced the acute ACTH1-24-induced cAMP output on Day 5 over that observed on Day 2. Treatment of fetal cells for 4 days with increasing concentrations of insulin or IGF-I enhanced the acute cAMP and steroidogenic responses (3- to 4-fold) to ACTH1-24 over that of control cells. The ED50 of IGF-I was about 3 ng/ml (congruent to 0.4 nM) whereas that of insulin was about 10 ng/ml (1.7 nM). However, a second plateau was apparent at concentrations of insulin above 1 microgram/ml. The acute cholera toxin stimulation of cAMP production of cells cultured in the absence of insulin or ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study reports that insulin-like growth factor I (IGF-I) prevents cerebellar granule cells from developing sensitivity to kainate neurotoxicity. Sensitivity to kainate neurotoxicity normally develops 5-6 days after switching cultures to a serum-free medium containing 25 mM K(+). Addition of either IGF-I or insulin to the serum-free medium at the time of the switch prevented the development of sensitivity to kainate, whereas brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4, and nerve growth factor did not. The dose-response curves indicated IGF-I was more potent than insulin, favoring the assignment of the former as the physiological protective agent. The phosphatidylinositol 3-kinase (PI 3-K) inhibitors wortmannin (10-100 nM) and LY 294002 (0.3-1 microM) abolished the protection afforded by IGF-I. The p70 S6 kinase (p70(S6k)) inhibitor rapamycin (5-50 nM:) also abolished the protection afforded by IGF-I. The activities of both enzymes decreased in cultures switched to serum-free medium but increased when IGF-I was included; wortmannin (100 nM) lowered the activity of PI 3-K from 2 to 5 days after medium switch, whereas rapamycin (50 nM) prevented the increase observed for p70(S6k) activity over the same interval. The mitogen-activated protein kinase kinase inhibitor U 0126 and the mitogen-activated protein kinase inhibitor SB 203580 did not abolish IGF-I protection. Kainate neurotoxicity was not prevented by Joro spider toxin; therefore, the development of kainate neurotoxicity could not be explained by the formation of calcium-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. These results indicate that IGF-I functions through a signal transduction pathway involving PI 3-K and p70(S6k) to prevent the development of sensitivity to kainate neurotoxicity in cerebellar granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号