首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
A true hemoglobin (Hb) was shown to be present in the root nodules of Alnus glutinosa L. After purification by gel filtration and ion exchange, the Hb formed a stable complex with oxygen. This oxygen complex could then be converted to carboxyhemoglobin by treatment with CO. Optical absorption spectra typical of Hb were observed. The molecular weight was estimated to be 15 100 by gel filtration, and 18 300 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Hb was largely insoluble when the initial homogenization was done in the absence of a detergent. Under these conditions much of the Hb appears to be associated with clusters of Frankia , the nitrogen-fixing actinomycete that infects plant cells within the nodules. The exact localization of the Hb in vivo is uncertain. The relatively low average concentration of Hb in Alnus nodules suggests that it is either confined to a relatively small fraction of total nodule volume, or has a function other than facilitation of O2 transport.  相似文献   

3.
Host compatibility of different spore-positive (Sp+)and spore-negative (Sp?) strain types of Frankia from alder stands in Finland was studied in Modulation tests with hydrocultures of Alnus glutinosa (L.) Gaertner, A. incana (L.) Moench and A. nitida Endl. Root nodules and soil samples from stands of A. incana (Lammi forest and Hämeenlinna forest) were dominated by Sp + types of Frankia (coded AiSp+ and AiSp+ H. respectively), which caused effective root nodules in test plants of A. incana, but failed to induce nodules in A. nitida. In A. glutinosa Frankia strain types AiSp + and AiSp + H caused small, ineffective root nodules with sporangia (coded Ineff ?), which were recognized by the absence or near absence of vesicles in the nodule tissue. Ineffective nodules without sporangia (coded Ineff ?) were induced on A. glutinosa with soil samples collected at Lammi swamp. The spore-negative strain type of Frankia was common in root nodules of A. glutinosa in Finland (Lammi swamp) and caused effective Sp? type root nodules (coded AgSp ?) in hydrocultures of A. incana, A. glutinosa and A. nitida. A different Sp + strain type of Frankia. coded AgSp+ Finland, was occasionally found in stands of A. glutinosa. It was clearly distinguished from strain type AiSp + by the ability to produce effective nodules on both A. glutinosa and A. incana. The nodulation capacities of soil and nodule samples were calculated from the nodulation response in hydrocutlure and served as a measure for the population density of infective Frankia particles. Sp + nodules from both strain types had equal and high nodulation capacities with compatible host species. The nodulation capacities of Sp type root nodules from A. glutinosa were consistently low. High frequencies of Frankia AiSp+ and AiSp+ H were found in the soil environment of dominant AiSp + nodule populations on A. incana. The numbers of infective particles of this strain type were insignificant in the soil environment of nearby Sp ? nodule populations on A. glutinosa and in the former field at Hämeen-linna near the Sp+ nodule area in Hämeenlinna forest. Strain type AgSp? had low undulation capacity in the soil environment of both A. incana and A. glutinosa stands, Explanations for the strong associations between Frankia strain types AiSp+ and AiSp ? H and A. incana and between strain type AgSp? and A. glutinosa are discussed in the light of host specificity and of some characteristics of population dynamics of both strain types. The possible need to adapt the concept of Frankia strain types Sp + and Sp ? to strains with some variation in spore development was stressed by the low potentials of strain type AiSp + H to develop spores in symbioses with hydrocultures of A. incnna.  相似文献   

4.
5.
Abstract. The invasion of the actinomycete Frankia into the root cells of Alnus glutinosa with subsequent nodule formation effects a number of ultrastructural changes in the host cell cytoplasm. Among other changes the amyloplasts rapidly lose their starch and acquire an amoeboid or pleomorphic form. Such plastids occur predominantly in the mature vesicle-containing, nitrogen-fixing cells of the nodule. They lack starch, have an electron dense stroma and a complex lamellar system. This last would appear to be associated with a distinct membranous reticulum which can be extensive. The flexible form of these plastids is mirrored in their ability to enclose portions of host cytoplasm together with organelles and even other plastids. Their close association with cristate mitochondria suggests an active metabolic role in the nodule symbiosis.  相似文献   

6.
7.
Citrulline was the major amino acid in root pressure sap, stem sap and stem wood from Alnus glutinosa L. Gaertn. plants relying on fixed nitrogen or, partly or wholly, on mineral nitrogen for growth. Glutamine increased in prominence in plants assimilating mineral nitrogen but asparagine remained a relatively insignificant component. Differences in the relative amounts of the free amino compounds of stem sap from nitrogen-fixing and mineral nitrogen-fed plants were usually small compared to differences between plants fed different sources of mineral nitrogen. In contrast, relatively high values for the ratios of citrulline/total free amino nitrogen compounds and particularly of citrulline/amides in root pressure sap distinguished nitrogen-fixing plants from those receiving mineral nitrogen. Although the amino acid ratios of stem wood extracts showed closer similarity to those for root pressure sap than stem sap, the seasonal accumulation of citrulline, possibly as a storage amino acid, in stem wood from field-grown plants negated the possibility of utilising stem wood analyses as an indicator of the form of nitrogen assimilation. Comparative data on the levels of citrulline or other free amino acids in Alnus glutinosa are unlikely to be useful as an index of nitrogen fixation, under most experimental conditions.  相似文献   

8.
9.
Nodulin-26 (N-26) is a major peribacteroid membrane protein in soybean root nodules. The gene encoding this protein is a member of an ancient gene family conserved from bacteria to humans. N-26 is specifically expressed in root nodules, while its homolog, soybean putative channel protein, is expressed in vegetative parts of the plant, with its highest level in the root elongation zone. Analysis of the soybean N-26 gene showed that its four introns mark the boundaries between transmembrane domains and the surface peptides, suggesting that individual transmembrane domains encoded by a single exon act as functional units. The number and arrangement of introns between N-26 and its homologs differ, however. Promoter analysis of N-26 was conducted in both homologous and heterologous transgenic plants. The cis-acting elements of the N-26 gene are different from those of the other nodulin genes, and no nodule-specific cis-acting element was found in this gene. In transgenic nodules, the expression of N-26 was detected only in the infected cells; no activity was found in nodule parenchyma and uninfected cells of the symbiotic zone. The N-26 gene is expressed in root meristem of transgenic Lotus corniculatus and tobacco but not in untransformed and transgenic soybean roots, suggesting the possibility that this nodulin gene is controlled by a trans-negative regulatory mechanism in homologous plants. This study demonstrates how a preexisting gene in the root may have been recruited for symbiotic function and brought under nodule-specific developmental control.  相似文献   

10.
ABSTRACT

Endomembrane transport system begins at the endoplasmic reticulum (ER), continues to the Golgi apparatus and subsequent compartment called trans-Golgi network (TGN). We found that SUT2, a tobacco sucrose-transporter ortholog and was localized in the TGN, decreased significantly under a sucrose-starvation condition. The tobacco SNARE protein SYP41, localized in the TGN and secretory vesicle cluster (SVC), also decreased under the starvation. Similarly, the SCAMP2-RFP fusion protein, which is localized in TGN, SVC, and plasma membrane (PM), was distributed solely in the PM under the starvation. Under the same starvation condition, protein secretion was not arrested but pectin deposition to cell wall was suppressed. These data indicated that the protein composition in TGN and existence of the SVC are regulated by sugar availability. Furthermore, our findings as well as the involvement of SVC in pectin secretion suggested that synthesis and transport of pectin are regulated by the level of extracellular sugars.  相似文献   

11.
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.  相似文献   

12.
Lee YI  Kim SY  Cho CH  Seo M  Cho DH  Kwak SJ  Juhnn YS 《FEBS letters》2003,555(2):329-334
Individual cell types express a characteristic balance between heterotrimeric G protein alpha and betagamma subunits, but little is known about the regulatory mechanism. We systemically examined the regulatory mechanism in CHO cells. We found that expression of Galphas, Galphai2, and Galphaq proteins increased in direct proportion to the increase of Gbeta1gamma2 overexpressed transiently. Expression of Gbeta protein also increased following overexpression of Galphas, Galphai2, and Galphaq. The Gbetagamma overexpression stimulated degradation of Gbeta in contrast to reduction of Galphas degradation. We conclude that coordinate expression of the G protein subunits involves regulation of protein degradation via proteasome in CHO cells.  相似文献   

13.
A novel inhibitory receptor of immunoglobin superfamily (IgSF), IgSF member 13 (IgSF13), has been identified from human dendritic cells (DC). IgSF13 is a type I transmembrane protein containing an N-terminal signal peptide, a extracellular region with a single Ig V-like domain, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs (ITIM), suggesting its inhibitory function. IgSF13 shows significant homology to human CMRF35 and pIgR. IgSF13 gene is mapped to chromosome 17q25.2, very close to that of CMRF35. IgSF13 is preferentially expressed in myelo-monocytic cells, including monocytes, monocyte-derived DC, and monocyte-related cell lines. Upon pervanadate treatment, IgSF13 was hyper-phosphorylated and associated with Src homology-2 domain-containing phosphatases SHP-1 and SHIP, but not SHP-2. The identification of IgSF13 as a novel ITIM-bearing receptor selectively expressed by DC and monocytes suggests that it may be potentially involved in the negative regulation of specific leukocyte population.  相似文献   

14.
15.
Swiprosin‐1 exhibits the highest expression in CD8+ T cells and immature B cells and has been thought to play a role in lymphocyte physiology. Here we report that swiprosin‐1 is also expressed in mast cells and up‐regulated in both in vitro cultured mast cells by phorbol ester and in vivo model tissues of passive cutaneous anaphylaxis and atopic dermatitis. Targeted inhibition of the specific protein kinase C (PKC) isotypes by siRNA revealed that PKC‐βI/η are involved in the expression of swiprosin‐1 in the human mast cell line HMC‐1. In contrast, down‐regulation of swiprosin‐1 by A23187 or ionomycin suggests that calcium‐signaling plays a negative role. The ectopic expression of swiprosin‐1 augmented PMA/A23187‐induced NF‐κB promoter activity, and resulted in increased expression of cytokines. Moreover, knock‐down of swiprosin‐1 attenuated PMA/A23187‐induced cytokine expression. Collectively, these results suggest that swiprosin‐1 is a PKC‐βI/η‐inducible gene and it modulates mast cell activation through NF‐κB‐dependent pathway. J. Cell. Biochem. 108: 705–715, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号