首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luxA and luxB genes of bioluminescent bacteria encode the alpha and beta subunits of luciferase, respectively. Sequences of the luxA and luxB genes of Xenorhabdus luminescens, the only terrestrial bioluminescent bacterium known, were determined and the amino acid sequence of luciferase deduced. The alpha subunit was found to contain 360 amino acids and has a calculated molecular weight of 41,005 Da, while the beta subunit contains 327 amino acids and has a calculated molecular weight of 37,684 Da. Alignment of this luciferase with the luciferases of three marine bacteria showed 196 (or 55%) conserved residues in the alpha subunit and 114 (or 35%) conserved residues in the beta subunit. The highest degree of homology between any two species was between the luciferases of X. luminescens and Vibrio harveyi with 84% identity in the alpha subunits and 59% identity in the beta subunits.  相似文献   

2.
L Xi  K W Cho    S C Tu 《Journal of bacteriology》1991,173(4):1399-1405
Xenorhabdus luminescens HW is the only known luminous bacterium isolated from a human (wound) source. A recombinant plasmid was constructed that contained the X. luminescens HW luxA and luxB genes, encoding the luciferase alpha and beta subunits, respectively, as well as luxC, luxD, and a portion of luxE. The nucleotide sequences of these lux genes, organized in the order luxCDABE, were determined, and overexpression of the cloned luciferase genes was achieved in Escherichia coli host cells. The cloned luciferase was indistinguishable from the wild-type enzyme in its in vitro bioluminescence kinetic properties. Contrary to an earlier report, our findings indicate that neither the specific activity nor the size of the alpha (362 amino acid residues, Mr 41,389) and beta (324 amino acid residues, Mr 37,112) subunits of the X. luminescens HW luciferase was unusual among known luminous bacterial systems. Significant sequence homologies of the alpha and beta subunits of the X. luminescens HW luciferase with those of other luminous bacteria were observed. However, the X. luminescens HW luciferase was unusual in the high stability of the 4a-hydroperoxyflavin intermediate and its sensitivity to aldehyde substrate inhibition.  相似文献   

3.
Structure and properties of luciferase from Photobacterium phosphoreum   总被引:1,自引:0,他引:1  
The nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits, respectively, of luciferase from Photobacterium phosphoreum have been determined. The predicted amino acid sequences of the alpha and beta subunits were shown to be significantly different from other bacterial luciferases with 62 to 88% identity with the alpha subunits and 47 to 71% identity with the beta subunits of other species. Expression of the different luciferases appear to correlate with the number of modulator codons. Kinetic properties of P. phosphoreum luciferase were shown to reflect the bacterium's natural cold temperature habitat.  相似文献   

4.
The lux A and lux B genes of Vibrio harveyi, encoding the alpha and beta subunits of bacterial luciferase, were cloned individually into Escherichia coli in two different compatible plasmids. Active luciferase was formed in an amount equal to that produced in cells carrying a plasmid with the cloned genes on a single fragment.  相似文献   

5.
DNA coding for the alpha and beta subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the alpha subunit as a hybridization probe, we identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the alpha and beta subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to and released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase alpha and beta subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.  相似文献   

6.
A study was made of the refolding of bacterial luciferases of Vibrio fischeri, V. harveyi, Photobacterium phosphoreum, and Photorhabdus luminescens. By reaction rate, luciferases were divided into two groups. The reaction rate constants of fast luciferases of V. fischeri and Ph. phosphoreum were about tenfold higher than those of slow luciferases of Ph. luminescens and V. harveyi. The order of increasing luciferase thermostability was Ph. phosphoreum, V. fischeri, V. harveyi, and Ph. luminescens. The refolding of thermoinactivated luciferases completely depended on the active DnaK-DnaJ-GrpE chaperone system. Thermolabile fast luciferases of V. fischeri and Ph. phosphoreum showed highly efficient rapid refolding. Slower and less efficient refolding was characteristic of thermostable slow luciferases of V. harveyi and Ph. luminescens. Chaperones of the Clp family were tested for effect on the efficiency of DnaK-dependent refolding of bacterial luciferases in Escherichia coli cells. The rate and extent of refolding were considerably lower in the clpB mutant than in wild-type cells. In E. coli cells with mutant clpA, clpP, of clpX showed a substantially lower luciferase refolding after heat shock.  相似文献   

7.
Bacterial luciferases and the genes encoding these light-emitting enzymes have an increasing number of applications in biological sciences. Temperature lability and the heterodimeric nature of these luciferases have been the major obstacles for their widespread use, for instance, as genetic reporters. Escherichia coli expressing wild-type Photorhabdus luminescens luciferase was found to produce eight times more light than the corresponding Vibrio harveyi luciferase clone in vivo at 37 degrees C. Three monomeric luciferases were created by translationally fusing the two genes encoding luxA and luxB proteins of P. luminescens. These clones were equally active in producing light in vivo when cultivated at 37 degrees C compared to cultivation at 30 degrees C. The fusion containing the longest linker showed the highest activity. In vitro, the monomeric luciferases were less active having at best 20% of activity of the wild-type enzyme due to the partial formation of insoluble aggregates. The results suggest that P. luminescens luciferase and monomeric derivatives thereof should be more suitable than the corresponding V. harveyi enzyme to be used as reporters in cell types which need cultivation at elevated temperatures.  相似文献   

8.
Bioluminescence of the insect pathogen Xenorhabdus luminescens.   总被引:8,自引:1,他引:7       下载免费PDF全文
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

9.
Bioluminescence of the insect pathogen Xenorhabdus luminescens   总被引:2,自引:0,他引:2  
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

10.
J Sugihara  T O Baldwin 《Biochemistry》1988,27(8):2872-2880
Ten recombinant plasmids have been constructed by deletion of specific regions from the plasmid pTB7 that carries the luxA and luxB genes, encoding the alpha and beta subunits of luciferase from Vibrio harveyi, such that luciferases with normal alpha subunits and variant beta subunits were produced in Escherichia coli cells carrying the recombinant plasmids. The original plasmid, which conferred bioluminescence (upon addition of exogenous aldehyde substrate) on E. coli carrying it, was constructed by insertion of a 4.0-kb HindIII fragment of V. harveyi DNA into the HindIII site of plasmid pBR322 [Baldwin, T.O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., & Ziegler, M. M. (1984) Biochemistry 23, 3663-3667]. Deletion mutants in the 3' region of luxB were divided into three groups: (A) those with deletions in the 3' untranslated region that left the coding sequences intact, (B) those that left the 3' untranslated sequences intact but deleted short stretches of the 3' coding region of the beta subunit, and (C) those for which the 3' deletions extended from the untranslated region into the coding sequences. Analysis of the expression of luciferase from these variant plasmids has demonstrated two points concerning the synthesis of luciferase subunits and the assembly of those subunits into active luciferase in E. coli. First, deletion of DNA sequences 3' to the translational open reading frame of the beta subunit that contain a potential stem and loop structure resulted in dramatic reduction in the level of accumulation of active luciferase in cells carrying the variant plasmids, even though the luxAB coding regions remained intact.  相似文献   

11.
N Valkova  R Szittner  E A Meighen 《Biochemistry》1999,38(42):13820-13828
Bacterial luciferases (LuxAB) can be readily classed as slow or fast decay luciferases based on their rates of luminescence decay in a single turnover assay. Luciferases from Vibrio harveyi and Xenorhabdus (Photorhabdus) luminescens have slow decay rates, and those from the Photobacterium genus, such as P. (Vibrio) fischeri, P. phosphoreum, and P. leiognathi, have rapid decay rates. By generation of an X. luminescens-based chimeric luciferase with a 67 amino acid substitution from P. phosphoreum LuxA in the central region of the LuxA subunit, the "slow" X. luminescens luciferase was converted into a chimeric luciferase, LuxA(1)B, with a significantly more rapid decay rate. Two other chimeras with P. phosphoreum sequences substituted closer to the carboxyl terminal of LuxA, LuxA(2)B and LuxA(3)B, retained the characteristic slow decay rates of X. luminescens luciferase but had weaker interactions with both reduced and oxidized flavins, implicating the carboxyl-terminal regions in flavin binding. The dependence of the luminescence decay on concentration and type of fatty aldehyde indicated that the decay rate of "fast" luciferases arose due to a high dissociation constant (K(a)) for aldehyde (A) coupled with the rapid decay of the resultant aldehyde-free complex via a dark pathway. The decay rate of luminescence (k(T)) was related to the decanal concentration by the equation: k(T) = (k(L)A + k(D)K(a))/(K(a) + A), showing that the rate constant for luminescence decay is equal to the decay rate via the dark- (k(D)) and light-emitting (k(L)) pathways at low and high aldehyde concentrations, respectively. These results strongly implicate the central region in LuxA(1)B as critical in differentiating between "slow" and "fast" luciferases and show that this distinction is primarily due to differences in aldehyde affinity and in the decomposition of the luciferase-flavin-oxygen intermediate.  相似文献   

12.
A chromosomal fragment of bacteria Photorhabdus luminescence Zm1, which contains the lux operon, was cloned into the vector pUC18. The hybrid clone containing plasmid pXen7 with the EcoRI fragment approximately 7-kb was shown to manifest a high level of bioluminescence. By subcloning and restriction analysis of the EcoRI fragment, the location of luxCDABE genes relative to restriction sites was determined. The nucleotide sequence of the DNA fragment containing the luxA and luxB genes encoding alpha- and beta-subunits of luciferase was determined. A comparison with the nucleotide sequences of luxAB genes in Hm and Hw strains of Ph. luminescence revealed 94.5 and 89.7% homology, respectively. The enterobacterial repetitive intergenic sequence (ERIC) of 126 bp typical for Hw strains was identified in the spacer between the luxD and luxA genes. The lux operon of Zm1 is assumed to emerge through recombination between Hm and Hw strains. Luciferase of Ph. luminescence was shown to possess a high thermal stability: its activity decreased by a factor of 10 at 44 degrees C for 30 min, whereas luciferases of marine bacteria Vibrio fischeri and Vibrio harveyi were inactivated by one order of magnitude at 44 degrees C for 1 and 6 min, respectively. The lux genes of Ph. luminescence are suggested for use in gene engineering and biotechnology.  相似文献   

13.
The lux genes of Xenorhabdus luminescens, a symbiont of the nematode Heterorhabditis bacteriophora, were cloned and expressed in Escherichia coli. The expression of these genes in E. coli was qualitatively similar to their expression in X. luminescens. The organization of the genes is similar to that found in the marine luminous bacteria. Hybridization studies with the DNA that codes for the two subunits of luciferase revealed considerable homology among all of the strains of X. luminescens and with the DNA of other species of luminous bacteria, but none with the nonluminous Xenorhabdus species. Gross DNA alterations such as insertions, deletions, or inversions do not appear to be involved in the generation of dim variants known as secondary forms.  相似文献   

14.
15.
16.
The aim of this study was to compare three different luciferase genes by placing them in a single reporter vector and expressing them in the same mammalian cell type. The luciferase genes investigated were the luc genes from the fireflies Photinus pyralis (PP) and Luciola mingrelica (LM) and the lux AB5 gene, a translational fusion of the two subunits of the bacterial luciferase from Vibrio harveyi (VH). The chloramphenicol acetyltransferase (CAT) gene was also included in this study for comparison. The performances of the assay methods of the corresponding enzymes were evaluated using reference materials and the results of the expressed enzymes following transfection were calculated using calibration curves. All of the bioluminescent assays possess high reproducibility both within and between the batches (less than 15%). The comparison of the assay methods shows that firefly luciferases have the highest detection sensitivity (0.05 and 0.08 amol for PP and LM, respectively) whereas the VH bacterial luciferase has 5 amol and CAT 100 amol. On the other hand, the transfection of the various plasmids shows that the content of the expressed enzyme within the cells is much higher for CAT than for the other luciferase genes. VH luciferase is expressed at very low levels in mammalian cells due to the relatively high temperature of growing of the mammalian cells that seems to impair the correct folding of the active enzyme. PP and LM luciferases are both expressed at picomolar level but usually 10 to 70 times less in content with respect to CAT within the transfected cells. On the basis of these results the overall improvement in sensitivity related to the use of firefly luciferases as reporter genes in mammalian cells is about 30 to 50 times with respect to that of CAT.  相似文献   

17.
Bacterial luciferase is a heterodimeric enzyme comprising two nonidentical but homologous subunits, alpha and beta, encoded by adjacent genes, luxA and luxB. The two genes from Vibrio harveyi were separated and expressed from separate plasmids in Escherichia coli. If both plasmids were present within the same E. coli cell, the level of accumulation of active dimeric luciferase was not dramatically less than within cells containing the intact luxAB sequences. Cells carrying the individual plasmids accumulated large amounts of individual subunits, as evidenced by two-dimensional polyacrylamide gel electrophoresis. Mixing of a lysate of cells carrying the luxA gene with a lysate of cells carrying the luxB gene resulted in formation of very low levels of active heterodimeric luciferase. However, denaturation of the mixed lysates with urea followed by renaturation resulted in formation of large amounts of active luciferase. These observations demonstrate that the two subunits, alpha and beta, if allowed to fold independently in vivo, fold into structures that do not interact to form active heterodimeric luciferase. The encounter complex formed between the two subunits must be an intermediate structure on the pathway to formation of active heterodimeric luciferase.  相似文献   

18.
Quorum sensing, involving signal transduction via the two-component response regulator LuxO to its downstream target LuxR, controls luminescence in the marine bacterium Vibrio harveyi. LuxR is a DNA binding protein that acts as both activator of the lux operon and repressor of its own gene. In order to determine if any other genes are affected by quorum sensing in V. harveyi, an assay for luxR-dependent promotion was devised using a genomic library maintained in a novel luxAB (luciferase) reporter. Screening in Escherichia coli DH-21 (lacI(sq)) entailed the addition of a second plasmid containing luxR under plac control. Four out of 5000 colonies showed luminescence stimulation upon IPTG induction of luxR. The four luxR-dependent promoters were upstream of argA, purM, lysE, and rluA, genes involved in arginine and purine biosyntheses, amino acid efflux, and pseudouridine synthesis, respectively. Based on analysis of luxR-dependent promoters, particularly that of argA, we describe a LuxR binding site, and implicate the coordination of LuxR with ArgR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号