首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal variation in leaf stomatal conductance (g s) of three xerophilous species (Buddleia cordata, Senecio praecox and Dodonaea viscosa) was measured over a 10-month period during the dry and wet seasons in a shrubland that is developing in a lava substratum in Mexico. Averaged stomatal conductances were 147 and 60.2 (B. cordata), 145 and 24.8 (D. viscosa) and 142.8 and 14.1 mmol m–2 s–1 (S. praecox) during the wet and dry season respectively. Leaf water potential () varied in a range of –0.6 to –1.2 (S. praecox), –0.6 to –1.8 (B. cordata) and –0.9 to –3.4 MPa (D. viscosa) during the same measurement periods. Stomata were more sensitive to changes in irradiance, air temperature and leaf–air vapour pressure difference in the rainy season than the dry season. Although stomatal responses to were difficult to distinguish in any season (dry or rainy), data for the entire period of measurement showed a positive correlation, stomata tending to open as increased, but there is strong evidence of isohydric behaviour in S. praecox and B. cordata. A multiplicative model relating g s to environmental variables and to accounted for 79%–83% of the variation of g s in three sites (pooled data); however, the performance of the model was poorer (60%–76%) for individual species from other sites not included in the pooled data.  相似文献   

2.
Seasonal regulation of leaf water potential (L) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum L were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum L by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5–8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (Gt) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum L throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum L, predawn L in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn L was more negative than bulk soil estimated by extrapolating plots of E versus L to E=0. Predawn disequilibrium between plant and soil was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.  相似文献   

3.
Summary Bud break, shoot growth and flowering of trees involve cell expansion, known to be inhibited by moderate water deficits. In apparent contradiction to physiological theory, many trees flower or exchange leaves during the 6 month-long, severe dry season in the tropical dry forest of Guanacaste, Costa Rica. To explore this paradox, changes in tree water status during the dry season were monitored in numerous trees. Water potential of stem tissues (stem) was obtained by a modification of the pressure chamber technique, in which xylem tension was released by cutting defoliated branch samples at both ends. During the early dry season twigs bearing old, senescent leaves generally had a low leaf water potential (leaf), while stem varied with water availability. At dry sites, stem was very low in hardwood trees (<–4 MPa), but near saturation (>–0.2 MPa) in lightwood trees storing water with osmotic potentials between –0.8 and –2.1 MPa. At moist sites trees bearing old leaves rehydrated during drought; their stem increased from low values (<–3 MPa) to near saturation, resulting in differences of 3–4 MPa between stem and leaf. Indirect evidence indicates that rehydration resulted from osmotic adjustment of stem tissues and improved water availability due to extension of roots into moist subsoil layers. In confirmation of physiological theory, elimination of xylem tension by leaf shedding and establishment of a high solute content and high stem were prerequisites for flowering and bud break during drought.  相似文献   

4.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   

5.
Miconia albicans, a common evergreen cerrado species, was studied under field conditions. Leaf gas exchange and pre-dawn leaf water potential (Ψpd) were determined during wet and dry seasons. The potential photosynthetic capacity (P Npmax) and the apparent carboxylation efficiency (ε) dropped in the dry season to 28.0 and 0.7 %, respectively, of the maximum values in the wet season. The relative mesophyll (Lm) and stomatal (Ls) limitations of photosynthesis increased, respectively, from 24 and 44 % in the wet season to 79 and 57 % at the peak of the dry season when mean Ψpd reached −5.2 MPa. After first rains, the P Npmax, ε, and Lm recovered reaching the wet season values, but Ls was maintained high (63 %). The shallow root system growing on stonemason limited by lateral concrete wall to a depth of 0.33 m explained why extreme Ψpd was brought about. Thus M. albicans is able to overcome quickly the strains imposed by severe water stress.  相似文献   

6.
Summary Bean plants (Kora cv) were grown in potted soil artificially salinized by adding NaCl and CaCl2 to the irrigation water to obtain an electrical conductivity of the soil saturation extract (ECe) thirty days after emergence of 0.1, 0.3, 0.5 and 0.7 S/m at 25°C and a sodium adsorption ratio (SAR) of 4 (mmol/l)2. Thereafter, plants were irrigated when soil water matric potential (M) was in the range of –20 to –30 kPa (wet treatment) and when M was in the range of –40 to –60 kPa (dry treatment).Transpiration rates (Tr) and leaf extension rates (LER) per plant or per unit of leaf area were decreased by increasing soil salinity and by decreasing soil moisture. However, a given decrement of M produced a considerable larger decrement in Tr of LER than an equivalent decrement of soil water osmotic potential (0). Absolute yields of green pods under wet treatments were from twice to one and a half time as large under the wet than under the dry treatment at equivalent values of 0. Relative yields were reduced by 25% when ECe were about 0.5 S/m and 0.7 S/m in the dry and wet treatment respectively. Salt tolerance data of crops may not have a quantitative interest when soil irrigation regimes under which they were obtained are not specified.  相似文献   

7.
The objective of this study was to determine how adjustment in stomatal conductance (g s) and turgor loss point (tlp) between riparian (wet) and neighboring slope (dry) populations of Acer grandidentum Nutt. was associated with the susceptibility of root versus stem xylem to embolism. Over two summers of study (1993–1994), the slope site had substantially lower xylem pressures (px) and g s than the riparian site, particularly during the drought year of 1994. The tlp was also lower at the slope (-2.9±0.1 MPa; all errors 95% confidence limits) than at riparian sites (-1.9±0.2 MPa); but it did not drop in response to the 1994 drought. Stem xylem did not differ in vulnerability to embolism between sites. Although slope-site stems lost a greater percentage of hydraulic conductance to embolism than riparian stems during the 1994 drought (46±11% versus 27±3%), they still maintained a safety margin of at least 1.7 MPa between midday px and the critical pressure triggering catastrophic xylem embolism (pxCT). Root xylem was more susceptible to embolism than stem xylem, and there were significant differences between sites: riparian roots were completely cavitated at -1.75 MPa, compared with -2.75 MPa for slope roots. Vulnerability to embolism was related to pore sizes in intervessel pit membranes and bore no simple relationship to vessel diameter. Safety margins from pxCT averaged less than 0.6 MPa in roots at both the riparian and slope sites. Minimal safety margins at the slope site during the drought of 1994 may have led to the almost complete closure of stomata (g s=9±2 versus 79±15 mmol m-2 s-1 at riparian site) and made any further osmotic adjustment of tlp non-adaptive. Embolism in roots was at least partially reversed after fall rains. Although catastrophic embolism in roots may limit the minimum for gas exchange, partial (and reversible) root embolism may be adaptive in limiting water use as soil water is exhausted.  相似文献   

8.
The phenology of sprouts (>1 year old, up to 1.5 m in height) and seedlings (<1 year old) of six woody species (four deciduous, one brevi-deciduous, and one evergreen) was examined during the dry season in a tropical deciduous forest of South India. Xylem water potential (x), leaf relative water content (RWC; % turgid weight), and xylem specific conductivity (K S; kg s–1 m–1 MPa–1) of sprouts were measured on two occasions during the dry season. In addition, K S of seedlings (<1 year old) of one deciduous and one evergreen species was determined to allow comparison with sprouts. x of deciduous species was significantly higher at the second sampling date and was accompanied by a significant increase in K S and RWC, while the brevi-deciduous and evergreen species did not show any difference in x. Seedlings of Terminalia crenulata (deciduous) and Ixora parviflora (evergreen) had significantly lower K S compared to sprouts, while seedlings of all four deciduous species shed their leaves much earlier in the dry season than did conspecific sprouts. More favorable water relations of sprouts compared to seedlings during the peak of the dry season may explain the lower rates of die-back and mortality of sprouts observed in dry deciduous forests of India.
This revised version was published online in May 2005 with corrections to Received-/Accepted-dates.  相似文献   

9.
土层厚度对刺槐旱季水分状况和生长的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
该研究测定了旱季和雨季刺槐(Robinia pseudoacacia)林不同土层厚度的土壤含水量, 刺槐的树高、胸径、小枝凌晨水势、叶片碳稳定同位素组成(δ13C)、叶面积、比叶重和气体交换指标; 分析了刺槐旱季和雨季的水分状况和土层厚度之间的关系; 通过刺槐对季节性干旱胁迫的反应, 估计华北石质山区不同土层厚度土壤水分对刺槐的承载能力; 并求证近年来该地区刺槐衰败和水分因素的关系。结果显示: 随着土层厚度减小, 旱季土壤含水量下降、凌晨小枝水势降低; 气孔导度和最大光合速率都减小, 而瞬时水分利用效率增加, 雨季上述指标无显著性差异, 旱季土壤含水量只有雨季的60%左右。随着土层变薄, 刺槐叶片δ13C增高, 叶面积减小, 比叶重增加; 刺槐树高和胸径减小。以上结果表明: 刺槐在不同季节下的水分状况综合反映土壤的供水能力, 土层浅薄导致土壤水分承载力不足, 致使刺槐在旱季受到较严重的水分胁迫, 这可能是刺槐出现衰败的重要原因。  相似文献   

10.
Summary Lupins (Lupinus angustifolius and L. cosentinii) growing in 321 containers in a glasshouse were exposed to drought by withholding water. Leaf water potential (1), and leaf osmotic potential (s) were measured daily as soil water became depleted. Leaf water relations were further assessed by a pressure-volume technique and by measuring s and relative water content of leaves after rehydration. Analysis by pressure-volume or cryoscopic techniques showed that leaf osmotic potential at saturation (s100) decreased from -0.6 MPa in well watered to -0.9 MPa in severely droughted leaves, and leaf water potential at zero turgor (zt) decreased from about -0.7 to -1.1 MPa in well watered and droughted plants, respectively. Relative water content at zero turgor (RWCzt) was high (88%) and tended to be decreased by drought. The ratio of turgid leaf weight to dry weight was not influenced by drought and was high at about 8.0. The bulk elastic modulus () was approximately halved by drought when related to leaf turgor potential (p) and probably mediated turgor maintenance during drought. The latter was found to be negatively influenced by rate of drought. Supplying the plants with high levels of K salts did not promote adjustment or turgor maintenance.  相似文献   

11.
Several pieces of research suggest that leaf liquid-path conductance (K1) may be smaller in evergreen species (EG) than in deciduous species (DC), coexisting in tropical dry forests. This was investigated in four DC and two EG in a tropical dry forest in Venezuela. The K1 (kg m-2 MPa-1 s-1) were consistently lower in EG (8.4 × 10-5) than in DC (12 to 20 × 10-5). Differences in water potential (W) inside the leaves were calculated using K1 values in connection with maximum transpiration rates measured in the field. It was found that W was about 1.9 MPa in EG, intermediate for one DC (Pithecellobium dulce, 1.7 MPa) and minimum for other DC (1.0 to 1.3 MPa).  相似文献   

12.
Plasticity in plants could be changed due to abiotic factors, tending to increase fitness across environments. In the Neotropical savannah, a strong water deficit during the dry season is one of the main factors limiting the plasticity in physiological responses of plants. The present study aims to assess the plasticity in physiological responses and vegetative phenology of three plant species of the Neotropical savannah (Cerrado in Brazil) during the dry and the rainy seasons. The three species, Byrsonima verbascifolia, Roupala montana, and Solanum lycocarpum, occur in Serra do Cipó in the state of Minas Gerais, Brazil. The development and vegetative phenology of individuals of these three species were evaluated over the course of 1 year. In February 2012 (rainy season) and August 2012 (dry season), stomatal conductance (g s), water potential (Ψ), photosynthetic quantum yield, and concentration of leaf photosynthetic pigments were measured. The relative distance among the physiological parameters of all individuals within each season was measured using the relative distance plasticity index. B. verbascifolia has pronounced senescence in July and lost leaves completely by the early September, while R. montana and S. lycocarpum have green leaves throughout the year. The three studied species had greater control of stomatal opening during the dry season. S. lycocarpum and R. montana had negative water potential values in the dry season and in the middle of the day in both seasons. In the dry season, the three species exhibited a decrease in F v/F m, with values between 0.7 and 0.75. The relative distance plasticity index varied from 0 to 1. R. montana demonstrated the greatest plasticity and S. lycocarpum had lower plasticity. Then, a seasonal effect on physiological response was observed in all three model-species, with lower values for leaf water potential and stomatal conductance, and increased photoinhibition, in the dry season. Ecophysiological traits, such as stomatal conductance and leaf water potential, exhibited the greatest plasticity. In addition, there was a seasonal effect on the plasticity in physiological responses of the three plants species of the Neotropical savannah. The results are contradicting the idea that water restriction in the dry season would reduce the plasticity in most species of the Neotropical savannah.  相似文献   

13.
Ber (Ziziphus mauritiana Lamk.) is a major fruit tree crop of the north-west Indian arid zone. In a study of the physiological basis of drought tolerance in this species, two glasshouse experiments were conducted in which trees were droughted during single stress-cycles. In the first experiment, during a 13 d drying cycle, pre-dawn leaf water (leaf) and osmotic () potentials in droughted trees declined from -0.5 and -1.4 MPa to -1.7 and -2.2 MPa, respectively, for a decrease in relative water content () of 14%. During drought stress, changes in sugar metabolism were associated with significant increases in concentrations of hexose sugars (3.8-fold), cyclitol (scyllo-inositol; 1.5-fold), and proline (35-fold; expressed per unit dry weight), suggesting that altered solute partitioning may be an important factor in drought tolerance of Ziziphus. On rewatering pre-dawn leaf and recovered fully, but remained depressed by 0.4 MPa relative to control values, indicating that solute concentration per unit water content had changed during the drought cycle.Evidence for osmotic adjustment was provided from a second study during which a gradual drought was imposed. Pressure-volume analysis revealed a 0.7 MPa reduction in osmotic potential at full turgor, with leaf at turgor loss depressed by 1 MPa in drought-stressed leaves. Coupled with osmotic adjustment, during gradual drought, was a 65% increase in bulk tissue elastic modulus (wall rigidity) which resulted in turgor loss at the same in both stressed and unstressed leaves. The possible ecological significance of maintenance of turgor potential and cell volume at low water potentials for drought tolerance in Ziziphus is discussed.Keywords: Ziziphus mauritiana, drought, solute accumulation, osmotic adjustment, proline.   相似文献   

14.
Tezara  W.  Fernández  M.D.  Donoso  C.  Herrera  A. 《Photosynthetica》1998,35(3):399-410
In order to determine whether stomatal closure alone regulates photosynthesis during drought under natural conditions, seasonal changes in leaf gas exchange were studied in plants of five species differing in life form and carbon fixation pathway growing in a thorn scrub in Venezuela. The species were: Ipomoea carnea, Jatropha gossypifolia, (C3 deciduous shrubs), Alternanthera crucis (C4 deciduous herb), and Prosopis juliflora and Capparis odoratissima (evergreen phreatophytic trees). Xylem water potential () of all species followed very roughly the precipitation pattern, being more closely governed by soil water content in I. carnea and A. crucis. Maximum rate of photosynthesis, Pmax, decreased with in I. carnea, J. gossypifolia, and A. crucis. In I. carnea and J. gossypifolia stomatal closure was responsible for a 90 % decline in net photosynthetic rate (PN) as decreased from -0.3 to -2.0 MPa, since stomatal conductance (gs) was sensitive to water stress, and stomatal limitation on PN increased with drought. In A. crucis, PN decreased by 90 % at a much lower (-9.3 MPa), and gs was relatively less sensitive to . In P. juliflora and C. odoratissima, Pmax, gs, and intercellular CO2 concentration (Ci) were independent of soil water content. In the C3 shrubs stomatal closure was apparently the main constraint on photosynthesis during drought, Ci declining with in I. carnea. In the C4 herb, Ci was constant along the range of values, which suggested a coordinated decrease in both gs and mesophyll capacity. In P. juliflora Ci showed a slow decrease with which may have been due to seasonal leaf developmental changes, rather than to soil water availability.  相似文献   

15.
Haase  Peter  Pugnaire  Francisco I.  Clark  S.C.  Incoll  L.D. 《Plant Ecology》1999,145(2):327-339
Seasonal changes in leaf demography and gas exchange physiology in the tall evergreen tussock grass Stipa tenacissima, one of the few dominant plant species in the driest vegetation of Europe, were monitored over a period of two years at a field site in semi-arid south-eastern Spain. Three age-classes of leaves – young, mature and senescent – were distinguished in the green canopy. Production of new leaves and extension growth of older leaves occurred exclusively from October–November to May–June. The rate of extension was significantly correlated with gravimetric soil water content. Leaf growth ceased after gravimetric soil water content fell below 0.015 g g–1 at the beginning of the dry season which corresponded to pre-dawn leaf water potentials of -3.0 MPa. Leaf senescence and desiccation reduced green leaf area by 43–49% during the dry season. Diurnal changes in the net photosynthetic rate of all three cohorts of leaves were bimodal with an early morning maximum, a pronounced midday depression and a small recovery late in the afternoon. Maximum photosynthetic rates of 10–16 mol CO2 m–2 s–1 were attained from November 1993 to early May 1994 in young and mature leaves. Photosynthetic rate declined strongly during the dry season and was at or below compensation in September 1994. Gas exchange variables of young and mature leaves were not significantly different, but photosynthetic rate and diffusive conductance to water vapour of senescing leaves were significantly lower than in the two younger cohorts. Leaf nitrogen content of mature leaves varied seasonally between 2.9 and 5.2 g m–2 (based on projected area of folded leaves), but was poorly correlated with maxima of the photosynthetic rate. There was a stronger linear relationship between the daily maxima of leaf conductance and pre-dawn leaf water potential than with atmospheric water vapour saturation deficit. Seasonal and between-year variation in daily carbon assimilation were caused mainly by differences in climatic conditions and canopy size whereas the effect of age structure of canopies was negligible. Since water is the most important limiting factor for growth and reproduction of S. tenacissima, any future rise in mean temperature, which might increase evapotranspiration, or decrease in rainfall, may considerably reduce the productivity of the grasslands, particularly at the drier end of their geographical distribution.  相似文献   

16.
Effects of water-stress treatment of Zea mays L. plants on protoplast volume and photosynthesis in leaf slices exposed to solutions of different osmotic potential ( s) were studied. Decreased photosynthetic capacity in the leaf slices at low tissue w was associated with dehydration-induced protoplast-volume reduction. Leaf slices from plants exposed to in-situ water deficits exhibited greater photosynthetic capacity and relative protoplast volume at low water potential ( w) invitro than tissue from control plants.In-situ water stress induced osmotic adjustment of the leaf tissue as determined by pressure/volume analysis. It is concluded that plant acclimation to low leaf w may involve a reduced degree of cell shrinkage at a given w. This acclimation would allow for the maintenance of relatively higher photosynthetic capacity at low water protentials.Symbols s Osmotic potential - w water potential New Jersey Agricultural Experiment Station Publication No. 12149-6-87  相似文献   

17.
Summary Over several days at permanently low plant water status in the field, where predawn xylem pressures () were never higher (less negative) than –1.2 MPa even after extended rain, leaf conductances (g) and transpiration rates of host trees, Eucalyptus behriana F. Muell., were higher than in mistletoes, Amyema miquelii (Lehm. ex Miq.) Tiegh., which contrasts with most studies known from the literature. Mistletoes influenced but not g of host leaves distal to the haustorium. Releasing xylem tension by cutting a host stem under water raised from about –3.5 MPa to about –0.5 MPa in both plants indicating that factors in the root zone were responsible for the low in the host. In all cases, with a freely transpiring or non-transpiring parasite at low and at artificially raised , mistletoe xylem pressure was lower than that of the host. Possible reasons are discussed.  相似文献   

18.
Guenni  Orlando  Baruch  Zdravko  Marín  Douglas 《Plant and Soil》2004,258(1):249-260
Neotropical savannas are exposed to recurrent dry periods of varied duration, and forage grasses must be able to cope with such temporal stresses to maintain productive pastures. This study compared leaf water relations and net photosynthesis under drought of five perennial Brachiaria species: the tufted B. brizantha (CIAT 6780), the semi-stoloniferous B. decumbens (CIAT 606) and B. mutica, and the stoloniferous B. humidicola (CIAT 679) and B. dictyoneura (CIAT 6133). Plants of the five grasses were grown in large pots and subjected to drought by suspending watering until first wilting symptoms (14 days for B. brizantha, B. decumbens and B. mutica, and 29 days for B. humidicola and B. dictyoneura). Afterwards, they were re-watered and a second soil dry cycle was imposed. Time trends in leaf water potential (l), relative water content (RWC), osmotic potential at full turgor (0 100), stomatal conductance (Gs) and net photosynthesis (A) of stressed (DT) plants were compared to those of well-irrigated (CT) plants. Predawn l in DT plants decreased to a minimum of –1.5 and –2.0 MPa in B. brizantha and B. mutica, compared to –2.5 to –3.0 MPa in B. decumbens, B. humidicola and B. dictyoneura. RWC decreased up to 50% in B. brizantha, compared to 75% in the other species. In B. humidicola, B. dictyoneura and in a lesser extent, B. decumbens, leaves of DT plants adjusted osmotically, by an apparent accumulation of nutrient solutes, at a rather constant ratio of turgid to dry weight of the tissue. Calculated osmotic adjustment ranged between 0.38 (B. decumbens) to 0.87 MPa (B. humidicola). This adjustment in 0 100 was in some cases maintained 7 days after re-watering. In B. brizantha and B. mutica, Gs and A were significantly affected by drought, with maximum reduction percentages at the second drought period of 65 and 80%, respectively. The corresponding reduction in B. decumbens was 53 and 55%, respectively; whereas in B. humidicola and B. dictyoneura Gs and A were reduced less than 20%. In all species, re-watering allowed for the water relations (except 0 100) and photosynthetic activity of leaves of DT plants to reach values comparable to those of CT plants. Results are discussed in term of root morphology and soil water extraction pattern, as well as leaf traits that may contribute to withstand drought under moderate soil water stress.  相似文献   

19.
Interactions between drought, insect herbivory, photosynthesis, and water potential play a key role in determining how plants tolerate and defend against herbivory, yet the effects of insect herbivores on photosynthesis and water potential are seldom assessed. We present evidence that cynipid wasp galls formed by Antistrophus silphii on Silphium integrifolium increase photosynthesis (A), stomatal conductance (g), and xylem water potential (). Preliminary data showed that in drought-stressed plants galled shoots had 36% greater A, and 10% greater stem than ungalled shoots, while in well-watered plants leaf gas exchange was not affected by galls. We hypothesized that 1) galled shoots have higher , g, and A than ungalled shoots, but this differences diminishes if plant drought stress is reduced, and 2) galls can reduce decreases in A and g if water availability decreases. A field experiment testing the first hypothesis found that galls increased g and , but that differences between galled and ungalled shoots did not diminish after plants were heavily watered. A laboratory test of the second hypothesis using potted Silphium found that galled plants had smaller drops in A and g over a 4-day dry-down period. A vs g and A vs intercellular CO2 concentration relationships were consistent with the explanation that increased allows galls to increase A by reducing stomatal limitation of A, rather than by altering sink-source relationships or by removing low- limitations on non-stomatal components of A. Our working hypothesis is that galls increase and A by reducing the shoot: root ratio so that the plant is exploiting a greater soil volume per unit leaf area. We argue that increased A is an ineffective way for Silphium to compensate for negative effects of gall insect attack. Instead, increased and A may protect gall insects from variation in resource availability caused by periodic drought stress, potentially reducing negative effects of drought on plant quality and on gall insect populations.  相似文献   

20.
Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5–0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in 13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号