首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To determine the contribution of sigma B (ςB) to survival of stationary-phase Listeria monocytogenes cells following exposure to environmental stresses, we compared the viability of strain 10403S with that of an isogenic nonpolar sigB null mutant strain after exposure to heat (50°C), ethanol (16.5%), or acid (pH 2.5). Strain viabilities were also determined under the same conditions in cultures that had been previously exposed to sublethal levels of the same stresses (45°C, 5% ethanol, or pH 4.5). The ΔsigB and wild-type strains had similar viabilities following exposure to ethanol and heat, but the ΔsigB strain was almost 10,000-fold more susceptible to lethal acid stress than its parent strain. However, a 1-h preexposure to pH 4.5 yielded a 1,000-fold improvement in viability for the ΔsigB strain. These results suggest the existence in L. monocytogenes of both a ςB-dependent mechanism and a pH-dependent mechanism for acid resistance in the stationary phase. ςB contributed to resistance to both oxidative stress and carbon starvation in L. monocytogenes. The ΔsigB strain was 100-fold more sensitive to 13.8 mM cumene hydroperoxide than the wild-type strain. Following glucose depletion, the ΔsigB strain lost viability more rapidly than the parent strain. ςB contributions to viability during carbon starvation and to acid resistance and oxidative stress resistance support the hypothesis that ςB plays a role in protecting L. monocytogenes against environmental adversities.  相似文献   

2.
The role of ςB, an alternative sigma factor of Staphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. ςB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. A sigB insertionally inactivated mutant was created. In stress resistance studies, ςB was shown to be involved in recovery from heat shock at 54°C and in acid and hydrogen peroxide resistance but not in resistance to ethanol or osmotic shock. Interestingly, S. aureus acquired increased acid resistance when preincubated at a sublethal pH 4 prior to exposure to a lethal pH 2. This acid-adaptive response resulting in tolerance was mediated via sigB. However, ςB was not vital for the starvation-survival or recovery mechanisms. ςB does not have a major role in the expression of the global regulator of virulence determinant biosynthesis, staphylococcal accessory regulator (sarA), the production of a number of representative virulence factors, and pathogenicity in a mouse subcutaneous abscess model. However, SarA upregulates sigB expression in a growth-phase-dependent manner. Thus, ςB expression is linked to the processes controlling virulence determinant production. The role of ςB as a major regulator of the stress response, but not of starvation-survival, is discussed.  相似文献   

3.
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, σB, which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and ΔsigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the ΔsigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both ΔsigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is σB independent. σB-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional σB reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. σB does not appear to contribute to pHi homeostasis through regulation of net proton movement across the cell membrane or by regulation of pHi buffering by the GAD system under the conditions examined in this study. In summary, a functional σB protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.  相似文献   

4.
5.
6.
7.
8.
Mutator Phenotype Induced by Aberrant Replication   总被引:7,自引:4,他引:3       下载免费PDF全文
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase δ (polδ) and mutants of Polα, two Polδ subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2+, which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Δ background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Δ was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Δ. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.  相似文献   

9.
10.
Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant Δsod, and double deletion mutant of the sod and lm. G_1771 genes Δ1771Δsod were used to investigate the role of SOD and its relationship to the expression of the putative ABC transporter permease in biofilm formation. Our results showed that the ability to form a biofilm was significantly reduced in the Δsod mutant and the Δ1771Δsod double mutant. Both Δsod and Δ1771Δsod mutants exhibited slow growth phenotypes and produced more reactive oxygen species (ROS). The growth was inhibited in the mutants by methyl viologen (MV, internal oxygen radical generator) treatment. In addition, the expression of one oxidation resistance gene (kat), two stress regulators encoding genes (perR and sigB), and one DNA repair gene (recA) were analyzed in both the wild-type L. monocytogenes 4b G and the deletion mutants by RT-qPCR. The expression levels of the four genes were increased in the deletion mutants when biofilms were formed. Taken together, our data indicated that SOD played an important role in biofilm formation through coping with the oxidant burden in deficient antioxidant defenses.  相似文献   

11.
Many methicillin-resistant (Mecr) strains of Staphylococcus aureus either produce no protein A or secrete it extracellularly (S. Winblad and C. Ericson, Acta Pathol. Microbiol. Scand. Sect. B 81:150–156, 1973). We found that methicillin resistance and protein A production were apparently lost coordinately from the natively Mecr strain A676. Restoration of the genetic determinant for methicillin resistance (mec) by transduction or transformation restored protein A production. In two other Mecr strains, loss of mec was accompanied by marked reduction in protein A formation. Genetic transfer of mec to derivatives of S. aureus 8325 affected protein A formation differently with different mec determinants. Those derived from strain A676 and two other Mecr strains reduced the scanty amount of protein A produced by strain 8325 to even lower or undetectable levels, whereas mec from two more Mecr strains increased its protein A content. This “mec-effect,” i.e., stimulation or inhibition of protein A formation dependent on the combination of host strain and mec determinant, was reduced in methicillin-susceptible (Mecs) mutants produced by ethyl methane sulfonate treatment of Mecr strains. The mec-effect reappeared in spontaneous revertants to methicillin resistance. Phenotypic reduction of methicillin resistance in Mecr strains grown at 44°C was accompanied by reduction of the mec-effect on protein A, but it had no effect on protein A formation in Mecs strains. Two independent mutants of strain 8325 produced large amounts of protein A at rates that were unaffected by growth at 44°C or by the introduction of mec determinants.  相似文献   

12.
The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor σB. Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.  相似文献   

13.
14.
15.
The staphylococcal accessory regulator SarA and the alternative sigma factor σB have been previously identified as positive regulators, and IcaR as a negative regulator, of icaADBC expression. Here, we show that in Staphylococcus aureus SarA and σB are also required for icaR expression and that IcaR does not have a significant effect on its own expression.  相似文献   

16.
In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H+ or Na+. In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na+/H+ antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na+ transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.  相似文献   

17.
18.
Flux balance analysis and phenotypic data were used to provide clues to the relationships between the activities of gene products and the phenotypes resulting from the deletion of genes involved in respiratory function in Saccharomyces cerevisiae. The effect of partial or complete respiratory deficiency on the ethanol production and growth characteristics of hap4Δ/hap4Δ, mig1Δ/mig1Δ, qdr3Δ/qdr3Δ, pdr3Δ/pdr3Δ, qcr7Δ/qcr7Δ, cyt1Δ/cyt1Δ, and rip1Δ/rip1Δ mutants grown in microaerated chemostats was investigated. The study provided additional evidence for the importance of the selection of a physiologically relevant objective function, and it may improve quantitative predictions of exchange fluxes, as well as qualitative estimations of changes in intracellular fluxes. Ethanol production was successfully predicted by flux balance analysis in the case of the qdr3Δ/qdr3Δ mutant, with maximization of ethanol production as the objective function, suggesting an additional role for Qdr3p in respiration. The absence of similar changes in estimated intracellular fluxes in the qcr7Δ/qcr7Δ mutant compared to the rip1Δ/rip1Δ and cyt1Δ/cyt1Δ mutants indicated that the effect of the deletion of this subunit of complex III was somehow compensated for. Analysis of predicted flux distributions indicated self-organization of intracellular fluxes to avoid NAD+/NADH imbalance in rip1Δ/rip1Δ and cyt1Δ/cyt1Δ mutants, but not the qcr7Δ/qcr7Δ mutant. The flux through the glycerol efflux channel, Fps1p, was estimated to be zero in all strains under the investigated conditions. This indicates that previous strategies for improving ethanol production, such as the overexpression of the glutamate synthase gene GLT1 in a GDH1 deletion background or deletion of the glycerol efflux channel gene FPS1 and overexpression of GLT1, are unnecessary in a respiration-deficient background.  相似文献   

19.
Staphylococcus epidermidis is the most common cause of device-associated infections. It has been shown that active and passive immunization in an animal model against protein SesC significantly reduces S. epidermidis biofilm-associated infections. In order to elucidate its role, knock-out of sesC or isolation of S. epidermidis sesC-negative mutants were attempted, however, without success. As an alternative strategy, sesC was introduced into Staphylococcus aureus 8325–4 and its isogenic icaADBC and srtA mutants, into the clinical methicillin-sensitive S. aureus isolate MSSA4 and the MRSA S. aureus isolate BH1CC, which all lack sesC. Transformation of these strains with sesC i) changed the biofilm phenotype of strains 8325–4 and MSSA4 from PIA-dependent to proteinaceous even though PIA synthesis was not affected, ii) converted the non-biofilm-forming strain 8325–4 ica::tet to a proteinaceous biofilm-forming strain, iii) impaired PIA-dependent biofilm formation by 8325–4 srtA::tet, iv) had no impact on protein-mediated biofilm formation of BH1CC and v) increased in vivo catheter and organ colonization by strain 8325–4. Furthermore, treatment with anti-SesC antibodies significantly reduced in vitro biofilm formation and in vivo colonization by these transformants expressing sesC. These findings strongly suggest that SesC is involved in S. epidermidis attachment to and subsequent biofilm formation on a substrate.  相似文献   

20.
Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号