首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Namibia supports a highly diverse avifauna of 644 species, including over 90 species endemic to the southern African subregion and 13 species endemic to the country. Patterns of species diversity in relation to protected areas and habitat types were analysed using data from the Southern African Bird Atlas Project. A modified Shannon index appropriate for atlas data was used to derive an index of diversity for all species, wetland, terrestrial, threatened, and regional endemic species. Species richness for Namibian endemics was mapped. Overall species diversity is highest in the northeast of Namibia where wetland and riparian habitats coincide. Both wetland and terrestrial species show highest diversity in this area. The greatest diversity of southern African endemics falls within the Savanna-Karoo systems. Several key areas are identified for red data species, including the Caprivi Strip, Kunene and Orange Rivers, coastal wetlands and ephemeral river mouths and pans. This highlights the pressures operating on wetland and riparian habitats in arid environments. Concentrations of Namibian endemics are found in the northwestern (Kaoko) escarpment of the country. Although much of the area of high diversity of wetland, terrestrial and red data species falls within protected areas, national and regional endemics are poorly represented within national parks.  相似文献   

2.
3.
One of the predicted biological responses to climate warming is the upslope displacement of species distributions. In the tropics, because montane assemblages frequently include local endemics that are distributed close to summits, these species may be especially vulnerable to experiencing complete habitat loss from warming. However, there is currently a dearth of information available for tropical regions. Here, we present a preliminary appraisal of this extinction threat using the herpetological assemblage of the Tsaratanana Massif in northern Madagascar (the island's highest massif), which is rich with montane endemism. We present meteorological evidence (individual and combined regional weather station data and reanalysis forecast data) for recent warming in Madagascar, and show that this trend is consistent with recent climate model simulations. Using standard moist adiabatic lapse rates, these observed meteorological warming trends in northern Madagascar predict upslope species displacement of 17–74 m per decade between 1993 and 2003. Over this same period, we also report preliminary data supporting a trend for upslope distribution movements, based on two surveys we completed at Tsaratanana. For 30 species, representing five families of reptiles and amphibians, we found overall mean shifts in elevational midpoint of 19–51 m upslope (mean lower elevation limit 29–114 m; mean upper elevation limit ?8 to 53 m). We also found upslope trends in mean and median elevational observations in seven and six of nine species analysed. Phenological differences between these surveys do not appear to be substantial, but these upslope shifts are consistent with the predictions based on meteorological warming. An elevational range displacement analysis projects complete habitat loss for three species below the 2 °C ‘dangerous’ warming threshold. One of these species is not contracting its distribution, but the other two were not resampled in 2003. A preliminary review of the other massifs in Madagascar indicates potential similar vulnerability to habitat loss and upslope extinction. Consequently, we urgently recommend additional elevational surveys for these and other tropical montane assemblages, which should also include, when possible, the monitoring of local meteorological conditions and habitat change.  相似文献   

4.
The adjustment of an existing index which combines endemism and species richness (Williams 1993) is proposed so that it requires markedly less data on the study area and its flora or fauna than was necessary with the conventional calculation method. Using this adjusted method, the resulting scores are calculated and mapped for the seed plant flora of the 20 African regions as delineated by White (1983). We argue that this index, here referred to as a measure of endemism richness, can be regarded as the specific contribution of an area to global biodiversity. We demonstrate that at a given sampling scale it shows a linear relation with area. We further demonstrate that, within certain limits, this linearity can also be observed in many cases when sampling scales vary which makes the comparison of differently sized geographic units easier than is the case for species richness. The two most important advantages over species richness are that this index is more suitable to measure both the conservation value of an area and the negative impact of invaders. The latter quality is due to the fact that it yields scores which usually do not rise substantially but can rather be expected to drop in many cases when an area is invaded by alien species.  相似文献   

5.
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.  相似文献   

6.
Distributions, endemism and diversity among East African linyphiids are analysed and discussed in relation to other forest organisms and the environmental history of eastern African. A total of 231 species are reported from eastern Africa, of which 14 are confined to the Afroalpine region and 114 species to moist forests. Only 12 of the latter are widely distributed. The rest are only known from one or two localities. Information on habitats and distributions of all species is tabulated. Few species are shared between East African mountains and there are no detectable gradients of species diversity between mountains. There is, however, a gradient of decreasing species diversity from high latitudes to the Equator. Vicariance patterns are demonstrated for Elgonia, Ophrynia and Callitrichia in the Eastern Arc Mountains, Tanzania—areas that also hold the highest degree of endemism (> 80% on individual mountains) among linyphiids. The many endemic species on nearby mountains suggest that intermontane dispersal (ballooning) is rare or non-existent. There is no evidence for a distinction between highland and lowland linyphiid faunas, but altitudinal segregation of single species is demonstrated. The question of the reality of highland and lowland faunas cannot be solved by studying the altitudinal distribution of single species. Phylogenetic relationships must be taken into consideration to determine where sister-groups/species are located (lowland or highland).  相似文献   

7.
It has been claimed that microbial taxa will not exhibit endemism because their enormous populations remove dispersal as an effective constraint on geographical range. Here we review evidence that challenges this ubiquity hypothesis for the most speciose group of microbial eukaryotes, the diatoms. Detailed taxonomic inventories using fine-grained morphological characteristics, molecular markers, and crossing experiments have revealed that the geographic distribution of diatoms ranges from global to narrow endemic. Records of human-mediated introductions of exotic species further provide a strong indication that geographic dispersal was limiting in the past. Finally, recent studies have revealed that diatom community structure and diversity are influenced by geographical factors independent of environmental conditions. Diatom communities are thus regulated by the same processes that operate in macro-organisms, although possibly to a different degree, implying that dispersal limitation is significant and the endemism observed in isolated areas is real. These results underscore the pressing need to (1) continue research into diatom biology, ecology and the factors driving diatom species diversity and geographic distributions, and (2) protect relatively isolated areas against further introductions of exotic species. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

8.
9.
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment-richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places.  相似文献   

10.
We studied several aspects of the cactus diversity in the Huizache, an area located in the southern extreme of the Chihuahuan Desert Region, in San Luis Potosí, Mexico. Fieldwork was conducted in a square-shaped polygon (22°30–23°00 N, 100°00–100°30 W), where a total of 80 systematically-chosen localities were sampled for cactus species. Results showed that the Huizache is an important focal point for the conservation of the Cactaceae, due to the remarkably high diversity of members of this plant family in the area. With 75 species recorded, this area has the highest concentration of cactus species in the American Continent, in comparison with other comparably-sized regions. The outstanding diversity of cactus species in the Huizache area may be explained by the relatively favorable climate of this desert area, its environmental heterogeneity, and its location in a transitional position between three regions with distinct cactus floras: Chihuahuan Desert Region, Queretaroan-Hidalgoan Arid Zone, and Tula-Jaumave Valleys. Species richness is not distributed evenly in the area; the zones of highest species concentration are primarily located in the lowland valleys, in the northwestern portion of the grid square, where typical Chihuahuan Desert conditions prevail. Of the 75 cactus species found in the area, 63% are endemic to the Chihuahuan Desert. Among these, ten species are outstanding for being endemic or nearly endemic to the Huizache area. The Huizache grid square is part of a recently declared natural reserve, The Real de Guadalcázar Natural Reserve.  相似文献   

11.
Hydraulic requirements of stream communities: a case study on invertebrates   总被引:4,自引:1,他引:4  
1. We relate invertebrate assemblages to direct measurements of near‐bed hydraulic conditions that integrate the complex three‐dimensional structure of flow close to the bottom. 2. We sampled invertebrate taxa from a Mediterranean River along a spatial gradient of increasing shear stress in two seasons (spring and autumn) with different hydrological conditions. We used a recently described ordination technique, Outlying Mean Index (OMI) analysis, to study the response of stream invertebrates to near‐bed hydraulic parameters. 3. The distribution of nearly 70% of the taxa collected was significantly related to the hydraulic parameters assessed. In both seasons, shear stress and Froude number were the most important hydraulic parameters whereas substratum particle size and bed roughness had less influence. Most of the 31 taxa collected in both seasons had a higher OMI (an index showing the deviation between the mean environmental conditions used by a taxon and the mean environmental conditions used by a theoretical taxon uniformly distributed across the studied gradient) in autumn (when flow was greater) and were found in samples with high shear stress and high Froude number. This suggests that benthic invertebrates changed their preferences according to flow conditions. 4. Taxon richness declined with increased shear stress during lower flow in spring. Finally, and agreeing with previous results, the proportion of filter feeders and collector‐gatherers was inversely related to shear stress. 5. Our results are a first step towards better habitat suitability models that could inform management decisions.  相似文献   

12.
13.
14.
Background: For prioritising practical conservation measures in areas of high endemic plant diversity, a fine-scale hierarchy of sites needs to be established. In this context, conservation sites designed at local and regional levels are considered a network of interconnected areas.

Aims: The main aim was to identify two hierarchical levels of a network of conservation sites, called ‘micro hotspots’ and ‘nano hotspots’, and test their efficiency for achieving conservation objectives across the island of Sardinia, Mediterranean Basin.

Methods: We analysed the spatial distribution of endemic vascular plant species (EVPS) richness. Additionally, the area, perimeter, connectivity and surplus costs for the protection of all endemic plant populations were used as ranking criteria for a hierarchical classification.

Results: We identified eight micro hotspots and 82 nano hotspots. Amongst the three possible solutions compared, the integrated network of micro and nano hotspots resulted in more effective conservation than any of the single-level network solutions with only micro or nano hotspots, and it included 89% of all EVPS in a relatively small areal extent.

Conclusions: The identification of hotspot networks at the regional level allowed determining priority areas to implement conservation efforts for EVPS. The integration of micro hotspots with nano hotspots resulted in the most effective network from both conservation and economic perspectives. We suggest that our model may provide an effective tool for integrated and effective conservation actions in the Mediterranean Basin.  相似文献   

15.
采用聚集度指标法和回归分析法,对思茅松毛虫幼虫在林间的空间格局进行测定,并用刀切法对聚集度指标进行估计和检验,结果表明,思茅松毛虫幼虫在林间呈聚集分布,分布的基本成份为个体群.并计算了林间调查的理论抽样数,列出序贯抽样分析表。  相似文献   

16.
Priority areas for in situ conservation are an unavoidable consequence of competition with other land uses, although they are certainly not to be seen as the only areas of value for conservation. In 1990 an international workshop was convened in Manaus, Brazil, to identify priority areas within Amazonia by committee (Workshop-90). A substantial part of the data for this assessment came from five plant families recorded for the Flora Neotropica. We compare the success of the Workshop-90 method in representing these plant species with the results of using a simple quantitative method for seeking complementary areas. The promises of quantitative methods are twofold. First, they force people to make their values explicit, which is important because priorities are dependent on the values and goals of individuals and are not universal. Second, quantitative methods can achieve representation of more of what is valued. For example, within the 90 top-priority areas (an arbitrary but convenient figure taken from Workshop-90), species representation is shown to be increased when using the complementary areas method by 83%. Simple computer implementations of this method can provide the means for fast inter-active exploration of flexibility in the many alternative area choices. This permits monitoring and review with minimum effort as new data on species and threats are acquired. On the other hand, the problem for all methods is the need for very large numbers of data, whether based on species or on any other surrogates for biodiversity, if well-informed decisions are to be made. This is not a particular problem of quantitative methods, but their explicit nature does highlight the shortcomings of data. For example, patterns in the Flora Neotropica data show effects from small samples even though these data are among the best available for any large tropical wet-forest region. Furthermore, in order to assess the longer-term consequences of area choices, quantitative methods will require many explicit local data on factors affecting viability, threat and cost.  相似文献   

17.
植物物种丰富度随山地海拔梯度的变化格局是生物多样性研究的热点之一.基于种-面积关系的任何模型对群落物种数目所作估计,其精度都依赖于样本的代表性、抽样尺度以及所涉及的分类群.作者以秦岭南坡森林群落样方实测的乔木种数据为例,借鉴群落最小面积(minimum area,MA)的概念及其确定方式,利用稀疏法(rarefacti...  相似文献   

18.
19.
玉米田斜纹夜蛾空间分布型及抽样技术   总被引:15,自引:0,他引:15  
对秋甜玉米田的斜纹夜蛾不同发生密度田块调查 ,取得了 7组样本资料 ,运用聚集度指标法、Iwao法和Taylor法等对其空间分布型进行测定检验 ,结果表明斜纹夜蛾幼虫呈聚集分布 ,其聚集原因经Blackith种群聚集均数测定 ,当m <3 .2 60 4时 ,其聚集是由于某些环境如气侯、土壤湿度、植株生长状况等所致 ;当m >3 .2 60 4时 ,其聚集是由于害虫本身的群集行为与环境条件综合影响所致。在此基础上 ,通过几种抽样方式比较以五点式为最佳 ,并提出了最佳理论抽样数和最佳序贯抽样模型 :N =1 D2 (3 .8981 m +0 .75 0 3 ) ,To(n) =0 .5n± 2 .865n。  相似文献   

20.
The gradual increase in reforested areas worldwide, as a strategy for mitigating native forest loss, has stressed the need of assessing their real value as habitat for native species. Forest plantations, particularly those based on native species, could be valuable for conservation purposes, especially in heavily fragmented and disturbed ecosystems. We evaluated the value of a monoculture of a native tree species, the Andean alder (Alnus acuminata), for the conservation of avifauna in the Central Andes region, which is considered a bird species diversity hotspot but also suffers from high anthropogenic disturbance levels. Our results suggest that alder plantations are valuable for conservation from three points of view: (1) they have similar or greater bird species richness and abundance than secondary native forests; (2) low community similarities are found between this type of forest compared to secondary forest stands (with 27 species exclusive to alder plantations); and (3) three near threatened species (Odontophorus hyperythrus, Eriocnemis derbyi, and Cyanolyca viridicyanus). Further, 27 out of the 85 species found at the alder plantations were of least concern but showing decreasing population trends. While forest plantations do not replace native forests, they offer habitat for many bird species, some of them being of conservation concern (i.e., included in an IUCN threat category) or with decreasing populations. Hence establishing native species plantations among native forest remnants – especially in heavily fragmented landscapes – could have a positive effect in the conservation of threatened avifauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号