首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although LDL esterified polyunsaturated fatty acids (PUFA) contribute largely to the pool of oxidizable lipids in plasma, they coexist with a non-negligible content of free PUFA. In some pathological conditions, the free PUFA/albumin ratio becomes abnormally elevated. Modeling was performed in a system constituted of linoleic acid bound to human serum albumin (HSA) in which oxidation was initiated by hydrophilic AAPH. Inhibition of lipid peroxidation was evaluated for various flavonoids. The accumulations of hydroperoxyoctadecadienoic acids (HPODE), hydroxyoctadecadienoic acids (HODE) and ketooctadecadienoic acids (KODE) were similarly inhibited: isoquercitrin>quercetin>catechin=isorhamnetin>kaempferol>quercetin-4'-beta-D-glucoside=quercetin-3,4'-di-beta-D-glucoside. Surprisingly, quercetin and isorhamnetin afforded a protection to linoleic acid long after their consumption. Elucidation by mass spectrometry and NMR of the quercetin oxidation products and assessment of their antioxidant capacity pointed out that 3,4-dihydroxybenzoic acid and 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one are major contributors to the apparent quercetin antioxidant capacity.  相似文献   

2.
Umeo Takahama 《Phytochemistry》1985,24(7):1443-1446
Quercetin inhibited soybean lipoxygenase-1-dependent linoleic acid peroxidation. Two to three μM quercetin was required for 50% inhibition. During the inhibition, quercetin was oxidized. The oxidation was observed as an absorbance decrease at about 380 nm and an absorbance increase at about 335 nm. Inhibition of linoleic acid peroxidation by quercetin seems to be due to reduction by the reagent of the linoleic acid radical formed as an intermediate during lipoxygenation. Quercetin oxidation was suppressed by ascorbate under conditions when ascorbate did not affect lipoxygenase-dependent linoleic acid peroxidation. The results suggest that ascorbate can reduce the quercetin oxidized by the linoleic acid radical back to quercetin. Based on the results, the significance of a redox reaction between oxidized quercetin and ascorbate is discussed.  相似文献   

3.
In this work, a quantitative kinetic model for investigating the heme-induced peroxidation of linoleic acid and its inhibition by two important dietary antioxidants, quercetin and alpha-tocopherol, is developed. The main conclusions of this work are: (1) The time dependence of the lipid hydroperoxide concentration is critically dependent on the rate constant for lipid hydroperoxide cleavage, initial fraction of lipid hydroperoxides among the pool of conjugated dienes, and rate of heme degradation. (2) The lipophilic antioxidant alpha-tocopherol acts as a chain-breaking antioxidant that quickly reduces 1-2 eq of lipid peroxyl radicals (inhibition of propagation), whereas the more hydrophilic antioxidant quercetin is only marginally chain-breaking but capable of reducing 4-5 eq of iron-oxo initiator (inhibition of initiation). (3) Based on comparisons between experimental peroxidation curves and simulated curves assuming additivity, it can be concluded that combinations of alpha-tocopherol and quercetin are generally synergistic. The kinetic analysis and HPLC titrations of the antioxidants both suggest that synergism mainly arises from a capacity of alpha-tocopherol to regenerate some quercetin oxidation products still endowed with a reducing activity.  相似文献   

4.

Background

Olive phenols are widely consumed in the Mediterranean diet and can be detected in human plasma. Here, the capacity of olive phenols and plasma metabolites to inhibit lipid and protein oxidations is investigated in two plasma models.

Methods

The accumulation of lipid oxidation products issued from the oxidation of linoleic acid bound to human serum albumin (HSA) by AAPH-derived peroxyl radicals is evaluated in the presence and absence of phenolic antioxidants. Phenol binding to HSA is addressed by quenching of the Trp214 fluorescence and displacement of probes (quercetin, dansylsarcosine and dansylamide). Next, the esterase activity of HSA-bound butyrylcholine esterase (BChE) is used as a marker of protein oxidative degradation.

Results

Hydroxytyrosol, oleuropein, caffeic and chlorogenic acids inhibit lipid peroxidation as well as HSA-bound BChE as efficiently as the potent flavonol quercetin. Hydroxycinnamic derivatives bind noncompetitively HSA subdomain IIA whereas no clear site could be identified for hydroxytyrosol derivatives.

General significance

In both models, olive phenols and their metabolites are much more efficient inhibitors of lipid and protein oxidations compared to vitamins C and E. Low postprandial concentrations of olive phenols may help to preserve the integrity of functional proteins and delay the appearance of toxic lipid oxidation products.  相似文献   

5.
The antioxidant action of flavonols in different systems of lipid peroxidation (LPO) was studied. Quercetin and rutin were found to inhibit NADPH and CCl4-dependent LPO in rat liver microsomes, however, in the case of CCl4-dependent LPO, rutin had a very poor antioxidant effect. Study of flavonols oxidation by products of the cytochrome c catalyzed destruction of linoleic acid hydroperoxide demonstrated that the differences in the antioxidant offects of quercetin and rutin can be due to their different capability to terminate free radical chain reactions. The antioxidant effect of rutin was shown to be largely due to the chelating properties of this compound.  相似文献   

6.
Macrophages are prominent components of human atherosclerotic lesions and they are believed to accelerate the progression and/or complications of both early and advanced atherosclerotic lesions. We and others have shown that oxidized low-density lipoprotein (oxLDL) induces growth and inhibits apoptosis in murine bone marrow-derived macrophages. In this study, we sought to characterize the oxidative modification of LDL that is responsible for this prosurvival effect. We found that both the modified lipid and the modified protein components of oxLDL can increase the viability of macrophages. The key modification appeared to involve derivatization of amino groups in apoB or in phosphatidylethanolamine by lipid peroxidation products. These reactive oxidation products were primarily unfragmented hydroperoxide- or endoperoxide-containing oxidation products of linoleic acid or arachidonic acid. LC-MS/MS studies showed that some of the arachidonic acid-derived lysine adducts were isolevuglandins that contain lactam and hydroxylactam rings. MS/MS analysis of linoleic acid autoxidation adducts was consistent with 5- or 6-membered nitrogen-containing heterocycles derived from unfragmented oxidation products. The amine modification by oxidation products generated a fluorescence pattern with an excitation maximum at 350nm and emission maximum at 430nm. This is very similar to the fluorescence spectrum of copper-oxidized LDL.  相似文献   

7.
Antioxidants can scavenge highly reactive radicals. As a result the antioxidants are converted into oxidation products that might cause damage to vital cellular components. To prevent this damage, the human body possesses an intricate network of antioxidants that pass over the reactivity from one antioxidant to another in a controlled way. The aim of the present study was to investigate how the semi-synthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER), a potential protective agent against doxorubicin-induced cardiotoxicity, fits into this antioxidant network. This position was compared with that of the well-known flavonoid quercetin. The present study shows that the oxidation products of both monoHER and quercetin are reactive towards thiol groups of both GSH and proteins. However, in human blood plasma, oxidized quercetin easily reacts with protein thiols, whereas oxidized monoHER does not react with plasma protein thiols. Our results indicate that this can be explained by the presence of ascorbate in plasma; ascorbate is able to reduce oxidized monoHER to the parent compound monoHER before oxidized monoHER can react with thiols. This is a major difference with oxidized quercetin that preferentially reacts with thiols rather than ascorbate. The difference in selectivity between monoHER and quercetin originates from an intrinsic difference in the chemical nature of their oxidation products, which was corroborated by molecular quantum chemical calculations. These findings point towards an essential difference between structurally closely related flavonoids in their interplay with the endogenous antioxidant network. The advantage of monoHER is that it can safely channel the reactivity of radicals into the antioxidant network where the reactivity is completely neutralized.  相似文献   

8.
Quercetin noncompetitively inhibited the peroxidation of linoleic acid catalyzed by soybean lipoxygenase‐1 (EC 1.13.11.12, Type 1) with an IC50 value of 4.8 μM (1.45 μg/ml). This inhibition is considered to proceed in sequential order, by initially reducing the ferric form of the enzyme to an inactive ferrous form and then, by chelating the iron of the active site of the enzyme. In the pseudoperoxidase assay, quercetin was slowly oxidized by hydroperoxides to a rather stable intermediate, 2‐(3,4‐dihydroxybenzoyl)‐2,4,6‐trihydroxybenzofuran‐3(2H)‐one, and this oxidized intermediate still inhibited the enzymatic oxidation, probably as a chelator. Rutin and kaempferol also exhibited lipoxygenase‐1 inhibitory activity, but to a much lesser extent than quercetin.  相似文献   

9.
Using three different assay systems, we have discovered a heretofore unrecognized antioxidant property of bile acids at physiological concentrations. Bile acids inhibit peroxidation of the polyunsaturated lipid, linoleic acid, and of the highly fluorescent protein phycoerythrin. In part, the antioxidant activity results from scavenging of peroxyl radicals by direct oxidation of the bile acids. The most abundant products of the reaction of cholate and chenodeoxycholate with peroxyl radicals were studied in detail and shown to be the keto derivatives formed by oxidation of the 7 alpha-hydroxyl groups. Paradoxically, at linoleate concentrations higher than 1-2 mM, glycocholate up to approximately 10-14 mM enhances lipid peroxidation and inhibits only at higher concentrations. These findings may prove important in understanding the etiology of certain disease states of the biliary tract and intestine where lipid peroxidation may be involved and in providing a rationale for the positive epidemiological correlation between high lipid intake and higher fecal bile acid output and colon cancer.  相似文献   

10.
Outer scales of yellow onion bulbs turn brown during maturing. The brown outer scales contain an antifungal component, 3,4-dihydroxybenzoic acid. An aim of the present study is to elucidate the mechanism of formation of the benzoic acid. In a browning scale, the scale was divided into three areas; fleshy, drying and dried brown areas. Levels of quercetin glucosides in dried brown areas were less than 10% of the glucosides in fleshy and drying areas, whereas levels of quercetin were high in dried brown areas. This result suggests that quercetin was formed by deglucosidation of quercetin glucosides on the border between drying and dried brown areas. Peroxidase (POX) activity of dried brown areas was about 10% of those of fleshy and drying areas. Quercetin was oxidized by autooxidation, and cell-free extracts of drying areas and POX isolated from onion scales enhanced the oxidation even in the absence of externally added hydrogen peroxide. The enhancement of quercetin oxidation was suppressed by catalase. No tyrosinase-like activity was detected in the cell-free extracts and the POX preparation. These results suggest that, during the enhanced oxidation of quercetin, hydrogen peroxide is formed. 3,4-Dihydroxybenzoic acid and 2,4,6-trihydroxyphenylglyoxylic acid, which were the oxidation products of quercetin, were found in dried brown area. These results suggest that an antifungal agent 3,4-dihydroxybenzoic acid is formed by POX-dependent oxidation of quercetin on browning of onion scales.  相似文献   

11.
Various phenolics and (mero)terpenoids from Helichrysum italicum subsp. microphyllum, a plant endemic to Sardinia, were investigated for their capacity to inhibit non-enzymatic lipid peroxidation. These compounds were studied in simple in vitro systems, under conditions of autoxidation and of iron (EDTA)-mediated oxidation of linoleic acid at 37 degrees C. Arzanol, a pyrone-phloroglucinol etherodimer, and helipyrone, a dimeric pyrone, showed antioxidant activity, and could protect linoleic acid against free radical attack in assays of autoxidation and EDTA-mediated oxidation. Methylarzanol, as well as the sesquiterpene alcohol rosifoliol, showed a decreased, but still significant, protective effect against linoleic acid oxidation. Arzanol and helipyrone were also tested in an assay of thermal (140 degrees C) autoxidation of cholesterol, where arzanol showed significant antioxidant activity. The cytotoxicity of arzanol was further evaluated in VERO cells, a line of fibroblasts derived from monkey kidney. Arzanol, at non-cytotoxic concentrations, showed a strong inhibition of TBH-induced oxidative stress in VERO cells. The results of the present work suggest that the natural compound arzanol exerts useful antioxidant properties in different in vitro systems of lipid peroxidation.  相似文献   

12.
13.
The inhibitory effect of anthocyanins has been investigated in the peroxidation of linoleic acid in micelles in the presence and in the absence of (+)-catechin. The peroxidation was initiated by thermal decomposition of 2,2(')-azobis[2-(2-imidazolin-2-yl)propane], and the kinetics of peroxidation were followed by measuring the rate of oxygen consumption and the rate of disappearance of the antioxidant. The analysis of the antioxidant effect of various anthocyanins, alone or in the presence of catechin, demonstrates that catechin, which is relatively inefficient at inhibiting linoleic acid oxidation, regenerates the highly efficient antioxidant malvidin 3-glucoside and, at a lower extent, peonidin 3-glucoside. The malvidin 3-glucoside recycling by catechin strongly increases the antioxidant efficiency of these two antioxidants. This protective mechanism appears specific for malvidin and peonidin 3-glucosides. The high unpaired spin density of the phenolic O atoms in the radicals generated by these anthocyanins, calculated by the semiempirical quantum chemical AM1 method, may explain the observed behavior.  相似文献   

14.
Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde group: 9-trans, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic acid, 9-oxo-nonanoic acid, and 12-oxo-9-dodecenoic acid. These oxidized chains replaced the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a function of the concentration of oxidized lipids, with concentrations from 2.8% to 50% for each oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an important conformational change in the lipids: the oxidized tails bend toward the water phase and the oxygen atoms form hydrogen bonds with water and the polar lipid headgroup. This conformational change leads to an increase in the average area per lipid and, correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are observed in the bilayers more frequently as the concentration of the oxidized lipids is increased. The changes in the structural properties of the bilayer and the water permeability are associated with the tendency of the oxidized lipid tails to bend toward the water interface. Our results suggest that one mechanism of cell membrane damage is the increase in membrane permeability due to the presence of oxidized lipids.  相似文献   

15.
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion–ascorbate combinations was investigated in aerated and incubated emulsions at 37 °C and pH 7. LA peroxidation induced by copper(II)–ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin > catechin ≥ quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33 V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)–Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure–activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.  相似文献   

16.
The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenase-mediated lipid peroxidation proceeds in general via regio-, stereo- and enantio-specific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio-, stereo-, and enantio-random. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radical-scavenging antioxidants such as alpha-tocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenase-catalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physico-chemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.  相似文献   

17.
Experiments were designed to measure O2 consumption caused by the oxidation of linoleic acid. These experiments show that vitamin K has antioxidant activity and that the reduction in linoleic acid oxidation is directly dependent upon vitamin K concentration. Conversely, vitamin K hydroquinone enhances linoleic acid oxidation in the absence of iron catalyst, again in a concentration dependent manner. At equilmolar concentrations vitamin K is about 80% as effective as vitamin E as an antioxidant. Vitamin E inhibits the oxidation of linoleic acid catalyzed by vitamin K hydroquinone. Vitamin E also strongly inhibits vitamin K dependent formation of both vitamin K epoxide and gamma-carboxyglutamic acid (gla). The significance of these observations to vitamin K action in vivo is discussed.  相似文献   

18.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

19.
The formation of phospholipid hydroperoxides was monitored in human red blood cell (RBC) membranes that had been peroxidized with an azo initiator. Peroxidation of RBC membranes caused a profound decrease in the amount of polyunsaturated fatty acids and concomitantly hydroperoxides, as primary products of peroxidation, appeared in the phospholipids. Hydroperoxides were predominantly generated in choline glycerophospholipid (CGP), while the extent of formation of ethanolamine glycerophospholipid (EGP) hydroperoxides was low and their presence was transient. Hydroxy and hydroperoxy moieties in CGP were identified as 9-hydroxy and 13-hydroxy octadecanoic acid, derived from linoleic acid, by gas chromatography-mass spectrometric analysis. No consistent generation of hydroperoxide from arachidonic acid was evident in CGP. The CGP-hydroperoxide accounted for approximately 76% of linoleic acid consumed during peroxidation of RBC membranes. The prominent generation of phospholipid hydroperoxides was observed in the linoleic acid-rich membranes from rabbit RBC, indicating that the level of linoleic acid in phospholipids determins, in part, the extent of formation of phospholipid hydroperoxides. Aldehydic phospholipids, as secondary products of peroxidation, were detected in oxidized membranes. EGP was the most prominent aldehydic phospholipid, while negligible amounts of aldehydic CGP were formed. This study indicates that the process of oxidation of individual phospholipids clearly differs among phospholipids and depends on the structure of each.  相似文献   

20.
The peroxidation of C18 unsaturated fatty acids by fungal manganese peroxidase (MnP)/Mn(II) and by chelated Mn(III) was studied with application of three different methods: by monitoring oxygen consumption, by measuring conjugated dienes and by thiobarbituric acid-reactive substances (TBARS) formation. All tested polyunsaturated fatty acids (PUFAs) were oxidized by MnP in the presence of Mn(II) ions but the rate of their oxidation was not directly related to degree of their unsaturation. As it has been shown by monitoring oxygen consumption and conjugated dienes formation the linoleic acid was the most easily oxidizable fatty acid for MnP/Mn(II) and chelated Mn(III). However, when the lipid peroxidation (LPO) activity was monitored by TBARS formation the linolenic acid gave the highest results. High accumulation of TBARS was also recorded during peroxidation of linoleic acid initiated by MnP/Mn(II). Action of Mn(III)-tartrate on the PUFAs mimics action of MnP in the presence of Mn(II) indicating that Mn(III) ions are involved in LPO initiation. Although in our experiments Mn(III) tartrate gave faster than MnP/Mn(II) initial oxidation of the unsaturated fatty acids with consumption of O2 and formation of conjugated dienes the process was not productive and did not support further development of LPO. The higher effectiveness of MnP/Mn(II)-initiated LPO system depends on the turnover of manganese provided by MnP. It is proposed that the oxygen consumption assay is the best express method for evaluation of MnP- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号