首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some cytological and morphological features of haploid and dihaploid winter rapó plants obtained via the anther cultivation approach have been studied. It was shown that in haploid plants the number of chloroplasts in stomatal guard cells, the size of the stomatal guard cells themselves were much smaller, and the number of stomata per square unit was greater than in doubled haploids and diploids. Haploids were also characterized by smaller sizes of petals and anthers and, in general, a smaller flower as compared to dihapliods and diploids.  相似文献   

2.
Summary Quantitative variation in seven morphological characteristics (leaf length and width, leaf length/ width ratio, flower, petal and stomata length, and number of chloroplasts in guard cells) were studied in Petunia hybrida plants regenerated from anther tissue culture and belonging to four different classes of ploidy (2n, 2n–3n, 3n–2n, 4n–8n). Results showed that leaf size is not a good characteristic for discriminating between plants of different ploidy — flower and stomata characteristics being more adequate for this purpose. After applying stepwise discriminant analysis the association chloroplast number — leaf length/width ratio — petal length was verified to be more appropriate for the discrimination of ploidy classes.  相似文献   

3.
Stomatal Characteristics at Different Ploidy Levels inCoffeaL.   总被引:1,自引:0,他引:1  
MISHRA  M. K. 《Annals of botany》1997,80(5):689-692
Stomatal frequency, epidermal cell frequency, stomatal guardcell length and stomatal index were examined at different ploidylevels inCoffea. In general, stomatal and epidermal cell frequencyper unit leaf area decreased while stomatal guard cell lengthincreased with an increase in ploidy. The reduction in stomatalfrequency at higher ploidy levels was mainly a result of largerepidermal cells. In the case ofC. canephora(cultivar S.274)a significant reduction in stomatal frequency was noticed fromdiploid to tetraploid level which was due to both larger epidermalcell size and less stomatal differentiation at the tetraploidlevel. Besides the effect of ploidy on stomatal frequency andguard cell length, genotypic differences in stomatal frequencyand stomatal guard cell length were also observed among cultivarsof the same ploidy level. Although variation in stomatal frequencyamong cultivars was found to be associated with the differencein stomatal to epidermal cell ratio, variation in guard celllength was attributed to differential genetic architecture.In the present study a highly significant positive correlation(r=0.82) between stomatal and epidermal cell frequency and highnegative correlations between stomatal frequency and guard celllength (r=-0.91) and epidermal cell frequency and stomatal guardcell length (r=-0.93) were obtained. The study also indicatedthat stomatal frequency can be predicted with 83 and 87% accuracy,respectively, by measuring stomatal guard cell length in coffee.Copyright1997 Annals of Botany Company Coffea; ploidy level; stomatal characteristics  相似文献   

4.
B. Galatis 《Planta》1977,136(2):103-114
The temporary development of Vigna sinensis seedlings in the presence of colchicine results in the inhibition of stomata generation and the formation of numerous persistent stomatal meristemoids (P-SM) and guard cell mother cells (P-GMC). Before dividing differentially or becoming GMC, the untreated meristemoiidsundergo a preparatory differentiation, during which a synthesis of new densely ribosomal cytoplasm, an increase of nuclear size, and a detectable proliferation of all the organelles are observed. The same process appears depressed and delayed in treated meristemoids; the cells have usually undergone only part of it when they reach the C mitosis. After the inhibition of their division, the bulged meristemoids II and GMC increase further in size, synthesize new nonribosomal cytoplasm, and start vacuolating slowly. The plastids also increase in size, change in shape, and become able to synthesize large quantities of starch. The cells retain a ribosomal cytoplasm, rough ER membranes, and active dictyosomes for a long time. At the advanced stages of differentiation, the microtubules reappear in the cells even when the plant remains under colchicine treatment. When mature, the P-GMC and P-SM are quite similar to the guard cells and possess considerably thickened periclinal walls, numerous mitochondria, and small vacuoles, while the nucleus, the plastids, and the cytoplasm occupy significant parts of the cell volume. In the epidermis displaying open stomata in light, significant K+ quantities are detectable in guard cells and P-GMC or P-SM, while they are almost absent from their surrounding cells. When the stomata close in darkness, K+ is accumulated primarily in the subsidiary or typical epidermal cells surrounding these idioblasts and only minimally inside them. Besides, the P-GMC and P-SM, like the guard cells, retain the starch for a long time and build up considerable starch quantities from exogenously supplied sugars.Abbreviations P-GMC persistent guard cell mother cell - PSM persistent stomatal meristemoid - ER endoplasmic reticulum  相似文献   

5.
以糍粑沟花楸(Sorbus cibagouensis H.Peng&Z.J.Yin)、大理花楸(S.hypoglauca(Cardot)Hand.-Mazz.)和川滇花楸(S.vilmorinii C.K.Schneid.)为材料,采用流式细胞术对其基因组大小及倍性进行检测分析,同时应用光学显微镜和扫描电子显微镜对其气孔特征进行观察。结果显示,3种花楸属植物的基因组大小和倍性、气孔特征均存在一定差异。糍粑沟花楸、大理花楸和川滇花楸的基因组大小分别为:(1.480±0.039)pg、(1.513±0.041)pg、(2.675±0.065)pg,在此基础上推断糍粑沟花楸和大理花楸为二倍体、川滇花楸为四倍体植物。显微镜观测发现:3种花楸属植物的气孔器均分布于叶的下表皮,气孔不下陷,保卫细胞无“T”型加厚结构,气孔类型为无规则形;糍粑沟花楸和川滇花楸的气孔器外拱盖光滑,而大理花楸气孔器外拱盖具有短棒状蜡质纹饰;3种植物的气孔器大小存在极显著差异。研究结果表明花楸属植物的基因组大小与倍性呈显著正相关,可用于推断植物的倍性;而气孔器大小和密度与倍性的相关性不大,但气孔特性在种间变化显著,可为种的鉴定提供科学的理论依据。  相似文献   

6.
The young guard cell of Selaginella inherits a single plastid from the division of the stomatal guard mother cell (GMC). During early stomatal development the single plastid undergoes a complex series of migrations and divisions. The regular pattern of plastid behavior appears to be an expression of the genetic program controlling division plane and cytomorphogenesis. The plastid in the GMC becomes precisely aligned with its midconstriction intersected by the plane of a preprophase band of microtubules (PPB) oriented parallel to the long axis of the leaf. This alignment with respect to the future division plane of the cytoplasm ensures equal plastid distribution to the daughter cells. Cytokinesis occurs in the plane previously marked by the PPB and the plastid in each daughter cell lies between the lateral wall and the newly formed nucleus. Following cytokinesis the plastid in each young guard cell develops a median constriction and migrates to the common ventral wall where the isthmus is associated with a system of microtubules in the vicinity of the developing pore region. Plastid division is completed while the plastid is adjacent to the common ventral wall. Following division, the two daughter plastids move back toward the lateral wall. Each plastid may divide again during guard cell maturation but no further migrations occur.  相似文献   

7.
对生长在荫棚3种不同光照条件下和全自然光下的热带雨林4个冠层种(望天树、绒毛番龙眼、团花、红厚壳)和3个中层种(玉蕊、藤黄、滇南风吹楠)树苗叶片气孔特征以及它们的可塑性进行了研究、结果表明,这些植物的气孔全部着生在远轴面.7种植物中,玉蕊和绒毛番龙眼的气孔密度较大,滇南红厚壳和团花的保卫细胞最长.随光强的增大,气孔密度和气孔指数增大,单位叶气孔数在低光强下较大.除团花外,其它植物叶片气孔导度在50%光强处最大,而光强对保卫细胞的长度影响不显著.相关分析表明,气孔密度与植物单位叶的面积呈负相关。而与气孔导度的相关性不显著、尽管两种不同生活型植物气孔指数和单位叶气孔数在不同光强下的可塑性差异较小,但冠层树种气孔密度和气孔导度的可塑性显著高于中层树种.  相似文献   

8.
M. R. Thomas  R. J. Rose 《Planta》1983,158(4):329-338
Mesophyll protoplasts were isolated from Nicotiana tabacum L. cv. Xanthi, and cell-colony formation induced in liquid culture. The plastid changes associated with the morphogenetic sequence from mesophyll protoplast to whole plant were examined. Minor ultrastructural changes in the plastids were evident after 1 d of culture, but by 8 d (four-to-eight-cell stage) the plastids were small, there was much less thylakoid membrane appression, and many prominent plastoglobuli were also present. Plastid-division figures were evident at this point of time and it was common to find plastids clustered around the nucleus. A typical proplastid was the dominant plastid type in the cultured cells from about 11 d until about five weeks when large amyloplasts and pregranal plastids were observed. Normally structured chloroplasts were present in the regenerated plant. There was no plastid division until the four-cell stage, with plastid numbers per cell approximately halving at each cell division, then stabilising around 12 per cell during cell-colony development, a number typical of meristematic cells. Though nucleoids were always present, their numbers in the plastids were reduced by the eight-cell stage.  相似文献   

9.
Summary The coleoptile ofOryza sativa develops, grows and ages within 4 days that follow imbibition. It is, thus, a very useful system for experimental analysis of the life cycle of organelles, for example, the development, growth and aging of plastids in higher plants. We examined the behavior and levels of DNA and chlorophyll in the plastid by epifluorescence microscopy after staining with 4-6-diamidino-2-phenylindole (DAPI), and by fluorimetry with a video-intensified-photon counting system (VIMPCS). The whitish yellow coleoptile appeared soon after imbibition and, between the first 24 and 60 h that followed imbibition, it grew markedly in a longitudinal direction, with concomitant elongation of the cells, and an increase in the volume of plastids and in the amount of DNA in the plastids. The chlorophyll content per plastid began to increase when the coleoptile turned green, 48 h after imbibition, and reached a plateau value when the coleoptile was 3.5 mm in length, 72 h after imbibition. More than 12 h later, the chlorophyll disappeared just before the breakdown of chloroplasts was initiated. Proplastids in young coleoptiles, contained a plastid nucleus which was located in the central area of the plastids and each nucleus consisted of approximately 6 copies of plastid DNA (ptDNA). The number of copies of ptDNA per plastid increased gradually, with a concomitant increase in the volume of the plastids after imbibition, and reached approximately 130 times the value in the young proplastids, 60 h after imbibition, when the plastid developed into a chloroplast. However, each plastid nucleus did not scatter throughout the entire interior region of each chloroplast. The disappearance of each plastid nucleus occurred more than 12 h before the degeneration of the chloroplasts. The number of plastids per cell increased from 10 to 15 in young coleoptiles within 12 h after imbibition. Yet the number remained constant throughout subsequent growth and aging of the coleoptile. Thus the preferential reduction in the amount of chloroplast DNA was not due to the division of the plastid but could, perhaps, be associated directly with the aging of the cells of the coleoptile which precedes senescence of the coleoptiles.  相似文献   

10.
嵩草属(Kobresia)植物是藏东南高山草甸的优势种和建群种,对该区畜牧业发展和维持生态系统平衡起着重要作用。选择西藏左贡县东达山为研究地点,从林线开始,海拔每升高约100m设置1个样带直至高山草甸分布边缘,共8个样带,调查各样带中物种的组成及盖度,并依据相对盖度和相对频度计算3种嵩草植物矮生嵩草(K.humilis)、线叶嵩草(K.capillifolia)和大花嵩草(K.macrantha)在群落中的重要值,同时取样观察它们叶片远、近轴面表皮细胞形态,测量气孔长度及保卫细胞宽度,计算气孔密度,探讨嵩草属植物对海拔梯度的适应性。结果表明:(1)3种嵩草属植物叶表皮细胞均呈波浪状,气孔器仅分布于远轴面,近轴面无气孔器分布。(2)3种嵩草属植物气孔密度沿海拔梯度的变化均呈单峰曲线分布格局,且在海拔4 537m样带处达到最大值,并表现为矮生嵩草(777.6个/mm2)线叶嵩草(476.4个/mm2)大花嵩草(414.3个/mm2)。(3)随海拔的增加,矮生嵩草和线叶嵩草气孔长度显著增大(P0.05),而保卫细胞宽度显著减小;但大花嵩草气孔长度随海拔的升高而显著减小,保卫细胞宽度基本保持不变。(4)矮生嵩草和线叶嵩草气孔密度、长度和保卫细胞宽度与海拔梯度均显著相关,气孔特征对海拔梯度变化的敏感程度高,与其在群落中重要值高的分布特征一致;而大花嵩草仅气孔密度和长度与海拔梯度显著相关,气孔特征对海拔梯度变化的敏感性低,与其在群落中重要值低的分布特征一致;嵩草属植物气孔密度、长度和保护细胞宽度与海拔梯度之间的相关性,反映出它们在海拔梯度上对生境的适应程度。可见,3种嵩草属植物气孔特征对海拔梯度上生境变化的适应性不同,从而影响它们在群落中的分布范围和物种优势度,其中矮生嵩草和线叶嵩草对环境变化敏感,而大花嵩草对环境变化相对不敏感;保卫细胞宽度与气孔长度同样对植物适应环境变化起重要作用。  相似文献   

11.
The development of stomatal guard cells is known to require cortical microtubules; however, it is not known if microtubules are also required by mature guard cells for stomatal function. To study the role of microtubules in guard cell function, epidermal peels of Vicia faba were subjected to conditions known to open or close stomata in the presence or absence of microtubule inhibitors. To verify the action of the inhibitors, microtubules in appropriately treated epidermal peels were localized by cryofixation followed by freeze substitution and embedding in butyl-methyl methacrylate. Mature guard cells had a radial array of microtubules, focused toward the thick cell wall of the pore, and the appearance of this array was the same for stomata remaining closed in darkness or induced to open by light. Treatment of epidermal peels with 1 mM colchicine for 1 h depolymerized nearly all cortical microtubules. Measurements of stomatal aperture showed that neither 1 mM colchicine nor 20 M taxol affected any of the responses tested: remaining closed in the dark, opening in response to light or fusicoccin, and closing in response to calcium and darkness. We conclude that intact microtubule arrays are not invariably required for guard cell function.  相似文献   

12.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

13.
Summary Part of the plastid rRNA cistron is present in the mitochondrial genome of Oenothera. This sequence of 2081 nucleotides contains the 3 half of the plastid 23 S rRNA, the adjacent intergenic region and the 4.5 S rRNA. Secondary intramitochondrial sequence rearrangements involve this region of plastid origin and the gene encoding the putative mitochondrial small ribosomal protein S13. Sequence comparison suggests that the interorganellar transfer event occurred a long time ago. The mitochondrial sequence contains regions more homologous to the plastid DNA from tobacco than from Oenothera itself in the regions analysed, suggesting faster sequence evolution in plastids than in mitochondria of Oenothera.  相似文献   

14.
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.Stomatal responses to the environment have been studied in leaves for well over 100 years. More recently, the mechanisms for these responses have been investigated using isolated epidermes or isolated guard cell protoplasts. Despite the combination of these two approaches, the mechanisms by which stomata respond to environmental signals are not well understood. Since stomata control CO2 uptake and water loss from leaves, the responses of stomata to environmental factors are important determinants of terrestrial productivity and water use. It is therefore critical that we understand the mechanisms by which stomata respond to the environment if we are to accurately predict the effects of future climates on productivity and water cycles (Randall et al., 1996).There are two assumptions about stomata that are implicit in much of the recent literature: (1) that stomatal responses result from sensory mechanisms that reside within the guard cells, and (2) that stomata in isolated epidermes respond similarly to those in a leaf. The exception to this generalization is the stomatal response to humidity, which has been suggested to be the result of changes in guard cell water potential (Dewar, 1995, 2002) or of signaling from other cells in the leaf to the guard cells (Buckley et al., 2003). The assumption that guard cells directly sense CO2 and light is largely based on data from isolated epidermes that show effects of light and CO2 on stomatal apertures. As pointed out by Mott (2009), however, stomatal responses to light and CO2 in isolated epidermes are generally much different from those observed in leaves; e.g. responses in isolated epidermes are generally smaller than those in leaves, opening in response to light is slower, and closing in darkness is rarely observed. These observations were used to suggest that the mesophyll is somehow involved in stomatal responses to red light and CO2. This idea is supported by several recent studies that suggest that guard cells do not respond directly to red light. In the first of these studies it was shown that guard cells in an intact leaf do not show hyperpolarization of the plasma membrane in response to red light if the red light is applied to only the guard cell (Roelfsema et al., 2002). In contrast, blue light applied only to the guard cell does cause hyperpolarization, and red light does cause hyperpolarization if applied to the guard cell and the underlying mesophyll. The second study showed that stomata in albino areas of a leaf do not respond to red light, although they contain chloroplasts and do respond to blue light (Roelfsema et al., 2006). Finally, a third study has shown that isolated epidermes are much more sensitive to light and CO2 when placed in close contact with an exposed mesophyll from a leaf from the same or a different species (Mott et al., 2008). These epidermis-mesophyll grafts showed stomatal responses to light and CO2 that were indistinguishable from those in an intact leaf—a sharp contrast to the behavior of stomata in isolated epidermes that are floating on buffer solutions. In that study, illumination of a single stoma in a leaf using a small-diameter fiber optic did not produce stomatal opening, but opening did occur if several stomata and the underlying mesophyll were illuminated. Furthermore, this treatment actually caused opening of adjacent, but unilluminated, stomata (Mott et al., 2008).In constructing the epidermis-mesophyll grafts in the study described above (Mott et al., 2008), it was noticed that functional grafts could be produced only if both the mesophyll and the epidermis were blotted completely dry of any free water before placing them together. Although the tissues were apparently still fully hydrated, there was very little free water present (i.e. water not contained within the walls of the leaf cells), and both the mesophyll and epidermis felt and looked dry prior to assembly. In addition, even when free water was blotted away initially, stomata did not open in grafts that ended up with visible water on the epidermis or mesophyll that was caused by condensation during the experiment. These observations suggest that the presence of free water somehow prevented the stomata in the grafts from opening. Assuming that the mechanisms operating in the grafts were similar to those in an intact leaf, this result also suggests that free water may have an effect on stomata in leaves as well. In addition, it seems possible that the effect of free water on stomata could be related to the disruption of the signal from the mesophyll that was proposed in an earlier study (Mott et al., 2008). We hypothesize that disruption of this signal could be caused by (1) dilution of some solute that is necessary for opening (such as K+) in the guard cell walls, (2) dilution of an apoplastic, liquid-phase opening signal from the mesophyll to the guard cells, and (3) blockage of a vapor-phase opening signal from the mesophyll to the guard cells. This study was initiated to test these three hypotheses by examining the effect of free water and other liquids on stomatal functioning.  相似文献   

15.
The nucleotide sequences of the plastid 16S rDNA of the multicellular red alga Antithamnion sp. and the 16S rDNA/23S rDNA intergenic spacers of the plastid DNAs of the unicellular red alga Cyanidium caldarium and of Antithamnion sp. were determined. Sequence comparisons support the idea of a polyphyletic origin of the red algal and the higher-plant chloroplasts. Both spacer regions include the unsplit tRNAIle (GAU) and tRNAAla (UGC) genes and so the plastids of both algae form a homogeneous group with those of chromophytic algae and Cyanophora paradoxa characterized by small-sized rDNA spacers in contrast to green algae and higher plants. Nevertheless, remarkable sequence differences within the rRNA and the tRNA genes give the plastids of Cyanidium caldarium a rather isolated position.  相似文献   

16.
Androgenesis,gynogenesis, and parthenogenesis haploids in cucurbit species   总被引:1,自引:0,他引:1  
Haploids and doubled haploids are critical components of plant breeding. This review is focused on studies on haploids and double haploids inducted in cucurbits through in vitro pollination with irradiated pollen, unfertilized ovule/ovary culture, and anther/microspore culture during the last 30 years, as well as comprehensive analysis of the main factors of each process and comparison between chromosome doubling and ploidy identification methods, with special focus on the application of double haploids in plant breeding and genetics. This review identifies existing problems affecting the efficiency of androgenesis, gynogenesis, and parthenogenesis in cucurbit species. Donor plant genotypes and surrounding environments, developmental stages of explants, culture media, stress factors, and chromosome doubling and ploidy identification are compared at length and discussed as methodologies and protocols for androgenesis, gynogenesis, and parthenogenesis in haploid and double haploid production technologies.  相似文献   

17.
18.
A method for the demonstration of pH changes in the apoplastis described. The fluorescent pH indicator pnmulin was usedto follow pH changes in the epidermis of leaves of Commelinacommunis during stomatal movements. Previously darkened leavesexposed to light showed quenching of fluorescence in the apoplastsurrounding theuard cells up to 20 min before the stomata opened.This indicated that proton efflux by the guard cells precededstomatal opening. This result was substantiated by apoplasticpH measurements using pH micro-electrodes. Acidification ofthe apoplast spread outwards from the guard cells to the surroundingsubsidiary and epidermal cells. This phenomenon persisted forsome time after subsequent stomatal closure, supporting thehypothesis that closure is brought about by a process otherthan the cessation of proton pumping. Key words: Commelina communis, stomata, proton pumping  相似文献   

19.
Based on the recent hypothesis on the origin of eukaryotic phototrophs, red algae, green plants, and glaucophytes constitute the primary photosynthetic eukaryotes (whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis), whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events (involving a phototrophic eukaryote and a host cell). Although phylogenetic analyses using multiple plastid genes from a wide range of eukaryotic lineages have been carried out, some of the major phylogenetic relationships of plastids remain ambiguous or conflict between different phylogenetic methods used for nucleotide or amino acid substitutions. Therefore, an alternative methodology to infer the plastid phylogeny is needed. Here, we carried out a cladistic analysis of the loss of plastid genes after primary endosymbiosis using complete plastid genome sequences from a wide range of eukaryotic phototrophs. Since it is extremely unlikely that plastid genes are regained during plastid evolution, we used the irreversible Camin-Sokal model for our cladistic analysis of the loss of plastid genes. The cladistic analysis of the 274 plastid protein-coding genes resolved the 20 operational taxonomic units representing a wide range of eukaryotic lineages (including three secondary plastid-containing groups) into two large monophyletic groups with high bootstrap values: one corresponded to the red lineage and the other consisted of a large clade composed of the green lineage (green plants and Euglena) and the basal glaucophyte plastid. Although the sister relationship between the green lineage and the Glaucophyta was not resolved in recent phylogenetic studies using amino acid substitutions from multiple plastid genes, it is consistent with the rbcL gene phylogeny and with a recent phylogenetic study using multiple nuclear genes. In addition, our analysis robustly resolved the conflicting/ambiguous phylogenetic positions of secondary plastids in previous phylogenetic studies: the Euglena plastid was sister to the chlorophycean (Chlamydomonas) lineage, and the secondary plastids from the diatom (Odontiella) and cryptophyte (Guillardia) were monophyletic within the red lineage.  相似文献   

20.
Summary The ultrastructure of developing and mature chloroplasts of members of the green algal orderCaulerpales is described. The mature chloroplasts develop from small starch containing plastids. These small starch containing plastids may also develop into the large amyloplasts characteristic of this order. The thylakoid organizing body (TOB), a system of concentric lamellae found at one end of the plastid, appears to be involved in initial thylakoid membrane synthesis. During early plastid development the first formed thylakoids, the plastid DNA and lipid are closely associated with this body. Many developing plastids also have a number of microfilaments near the chloroplast envelope. These microfilaments extend from the TOB towards the opposite end of the plastid.The size and structure of the mature caulerpalean chloroplast varies greatly between species, as does the size and structure of the TOB. The simplest type of TOB occurs inAvrainvillea erecta and the most complex inCaulerpa cactoides. The membranes of the TOB are connected by crossbridges and they are also connected with the inner chloroplast envelope membrane. The structure of the TOB, its relation to the chloroplast envelope, its association with the thylakoids and its possible functions are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号