首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (V(H)), diversity (D(H)), joining (J(H)) and constant (C(H)) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers that span the entire Igh locus. Comparison of the distance distributions to computer simulations of alternative chromatin arrangements predicted that the Igh locus is organized into compartments containing clusters of loops separated by linkers. Trilateration and triple-point angle measurements indicated the mean relative 3D positions of the V(H), D(H), J(H), and C(H) elements, showed compartmentalization and striking conformational changes involving V(H) and D(H)-J(H) elements during early B cell development. In pro-B cells, the entire repertoire of V(H) regions (2 Mbp) appeared to have merged and juxtaposed to the D(H) elements, mechanistically permitting long-range genomic interactions to occur with relatively high frequency.  相似文献   

4.
5.
We have used Abelson murine leukemia virus (A-MuLV) transformed pre-B cell lines to test the hypothesis that the rearrangement potential of a developing B-lymphocyte is dependent on an "opening" of the chromatin structure surrounding immunoglobulin (Ig) genes, thus allowing accessibility to an Ig gene recombinase. The chromatin structures surrounding heavy (H), kappa (kappa), and lambda (lambda) chain constant-region genes were assessed by DNase I sensitivity in A-MuLV transformed cell lines capable of H, kappa or lambda gene rearrangement. Our results indicate that DNase I-sensitive chromatin structures of these Ig constant-region genes correlate closely with the ability of the genes to undergo recombination. We also find that the chromatin structure of an Ig constant-region locus becomes DNase I sensitive before any DNA rearrangement events occur.  相似文献   

6.
7.
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64-99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering.  相似文献   

8.
G Keyeux  G Lefranc  M P Lefranc 《Genomics》1989,5(3):431-441
A simultaneous absence of the IgG1, IgG2, IgG4, and IgA1 immunoglobulins (Ig) was unambiguously demonstrated in six healthy individuals of two different families (family HASS and family TOU). These individuals were shown to be homozygous for a large deletion in the immunoglobulin heavy chain constant region locus. This deletion, which encompasses the G1-EP1-A1-GP-G2-G4 genes, allowed us to predict an order for the IgCH genes and to localize GP between A1 and G2. In this paper, we study the deletion-recombination point in the IGH locus of individual EZZ from the TOU family. We show that the distance between the G3 and the E genes on the EZZ recombinant chromosome is 24.7 kb and that the multigene deletion in the IgCH locus involves two highly homologous regions (hsg3 and hsg4) which are hot spots of recombination, outside of the switch sequences.  相似文献   

9.
10.
VDJ rearrangement in the mouse immunoglobulin heavy chain (Igh) locus involves a combination of events, including a large change in its nuclear compartmentalization. Prior to rearrangement, Igh moves from its default peripheral location near the nuclear envelope to an interior compartment, and after rearrangement it returns to the periphery. To identify any sites in Igh responsible for its association with the periphery, we systematically analyzed the nuclear positions of the Igh locus in mouse non-B- and B-cell lines and, importantly, in primary splenic lipopolysaccharide-stimulated B cells and plasmablasts. We found that a broad approximately 1-Mb region in the 5' half of the variable-gene region heavy-chain (Vh) locus regularly colocalizes with the nuclear lamina. The 3' half of the Vh gene region is less frequently colocalized with the periphery, while sequences flanking the Vh gene region are infrequently so. Importantly, in plasmacytomas, VDJ rearrangements that delete most of the Vh locus, including part of the 5' half of the Vh gene region, result in loss of peripheral compartmentalization, while deletion of only the proximal half of the Vh gene region does not. In addition, when Igh-Myc translocations move the Vh genes to a new chromosome, the distal Vh gene region is still associated with the nuclear periphery. Thus, the Igh region that interacts with the nuclear periphery is localized but is likely comprised of multiple sites that are distributed over approximately 1 Mb in the 5' half of the Vh gene region. This 5' Vh gene region that produces peripheral compartmentalization is the same region that is distinguished by requirements for interleukin-7, Pax5, and Ezh2 for rearrangement of the Vh genes.  相似文献   

11.
Ono SJ  Zhou G  Tai AK  Inaba M  Kinoshita K  Honjo T 《FEBS letters》2000,467(2-3):268-272
The complete humoral response to foreign antigen depends upon two distinct recombination events within the heavy chain locus of immunoglobulin. The first recombination event takes place in what will become the antigen combining site of the antibody molecule, encoded by V, D and J segments. The second recombination event involves the looping-out of large spans of DNA which separate the various clusters of heavy chain exons which define the different immunoglobulin isotypes, or classes. While a great deal has been learned about the nature of the VDJ recombinase, very little is known about the nature of the class-switch recombinase. Using a cell system where class-switch recombination occurs primarily to the IgA locus, we have looked for stimulus-dependent changes in the chromatin structure of the IgA locus which might result from interactions between components of the recombinase and cis-elements within the region. We present evidence that strongly suggests that the class-switch recombinase interacts between the Ialpha and Calpha exons of IgA, just upstream of the highly reiterated DR1 and DR2 elements. However, although multiple potential SMAD-4 sites are located precisely within the DNase I hypersensitive site and 160 bp upstream of that site, we failed to detect any evidence of DNA/protein interactions near the hypersensitive site. Moreover, recombinant SMAD-3/4 proteins fail to interact with these sites with appreciable affinity in vitro. These data suggest that some other structural alteration at this site (e.g. RNA/DNA hybrid) may mediate the nuclease sensitivity.  相似文献   

12.
13.
14.
DNA replication in mammalian cells is a precisely controlled physical and temporal process, likely involving cis-acting elements that control the region(s) from which replication initiates. In B cells, previous studies showed replication timing to be early throughout the immunoglobulin heavy chain (Igh) locus. The implication from replication timing studies in the B-cell line MPC11 was that early replication of the Igh locus was regulated by sequences downstream of the C alpha gene. A potential candidate for these replication control sequences was the 3' regulatory region of the Igh locus. Our results demonstrate, however, that the Igh locus maintains early replication in a B-cell line in which the 3' regulatory region has been deleted from one allele, thus indicating that replication timing of the locus is independent of this region. In non-B cells (murine erythroleukemia cells [MEL]), previous studies of segments within the mouse Igh locus demonstrated that DNA replication likely initiated downstream of the Igh gene cluster. Here we use recently cloned DNA to demonstrate that segments located sequentially downstream of the Igh 3' regulatory region continue to replicate progressively earlier in S phase in MEL. Furthermore, analysis by two-dimensional gel electrophoresis indicates that replication forks proceed exclusively in the 3'-to-5' direction through the region 3' of the Igh locus. Extrapolation from these data predicts that initiation of DNA replication occurs in MEL at one or more sites within a 90-kb interval located between 40 and 130 kb downstream of the 3' regulatory region.  相似文献   

15.
16.
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.  相似文献   

17.
We have adapted the meiotic recombination hotspot cog of Neurospora crassa for shuffling exogenous DNA, providing a means of generating novel genes in situ from sequences introduced into chromosomes. Genes to be diversified are inserted between the his-3 locus and cog. Diversification crosses are heterozygous both for alleles of the exogenous DNA and for auxotrophic alleles of his-3. Progeny selected for ability to grow without histidine supplementation are enriched for exchange events within the exogenous DNA. Exchange events initiated by cog can propagate past DNA sequences mismatched for more than 370 bp and complete exchanges in patches of matched sequence as short as 24 bp, parameters that make the system suited for use in the directed evolution of genes for protein engineering. Here we demonstrate the system by shuffling human immunoglobulin kappa chain genes and also endoglucanase genes derived from different species of fungi.  相似文献   

18.
Summary The previous simple model for treating concerted evolution of multigene families has been revised to be compatible with various new observations on the immunoglobulin variable region family and other families. In the previous model, gene conversion and unequal crossing-over were considered, and it was assumed that genes are randomly arranged on the chromosome; neither subdivision nor correlation of gene identity and chromosomal distance were considered. Although this model satisfactorily explains the observed amino acid diversity within and between species, it fails to predict the very ancient branching of the mouse immunoglobulin heavy chain V-gene family. By incorporating subdivided structure and genetic correlation with chromosomal distance into the simple model, the data of divergence may be satisfactorily explained, as well as the rate of nucleotide substitution and the amino acid diversity. The rate at which a V-gene is duplicated or deleted by conversion or by unequal crossing-over is estimated by the new model to be on the order of 10–6 per year. The model may be applicable to other multigene families, such as those coding for silkmoth chorion or mammalian kallikrein.Contribution no. 1560 from the National Institute of Genetics, Mishima, 411 Japan  相似文献   

19.
The murine immunoglobulin heavy-chain (Igh) locus provides an important model for understanding the replication of tissue-specific gene loci in mammalian cells. We have observed two DNA replication programs with dramatically different temporal replication patterns for the Igh locus in B-lineage cells. In pro- and pre-B-cell lines and in ex vivo-expanded pro-B cells, the entire locus is replicated early in S phase. In three cell lines that exhibit the early-replication pattern, we found that replication forks progress in both directions through the constant-region genes, which is consistent with the activation of multiple initiation sites. In contrast, in plasma cell lines, replication of the Igh locus occurs through a triphasic pattern similar to that previously detected in MEL cells. Sequences downstream of the Igh-C alpha gene replicate early in S, while heavy-chain variable (Vh) gene sequences replicate late in S. An approximately 500-kb transition region connecting sequences that replicate early and late is replicated progressively later in S. The formation of the transition region in different cell lines is independent of the sequences encompassed. In B-cell lines that exhibit a triphasic-replication pattern, replication forks progress in one direction through the examined constant-region genes. Timing data and the direction of replication fork movement indicate that replication of the transition region occurs by a single replication fork, as previously described for MEL cells. Associated with the contrasting replication programs are differences in the subnuclear locations of Igh loci. When the entire locus is replicated early in S, the Igh locus is located away from the nuclear periphery, but when Vh gene sequences replicate late and there is a temporal-transition region, the entire Igh locus is located near the nuclear periphery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号