首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Baukje de Roos is a principal investigator at the University of Aberdeen, Rowett Institute of Nutrition and Health. She investigates mechanisms through which dietary fats and fatty acids, and also polyphenols, affect parameters involved in the development of heart disease in vivo. This is achieved not only by measuring their effect on conventional risk markers for heart disease but also by assessing their effect on new markers that are being developed through proteomic and mass spectrometry methods. She obtained her PhD in Human Nutrition at Wageningen University, The Netherlands, in January 2000, after which she was appointed as a post-doctoral research fellow at the Department of Vascular Biochemistry, Glasgow Royal Infirmary, in collaboration with GlaxoSmithKline. In June 2001 she joined the Rowett Research Institute in Aberdeen. She is currently working for the University of Aberdeen, where her research is funded by the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD). She is an active member of the European Nutrigenomics Organisation (NuGO), an EU-funded Network of Excellence, which merges the nutrigenomics activities of its 23 partners across Europe.  相似文献   

2.
Introduction: Cancer is often diagnosed at late stages when the chance of cure is relatively low and although research initiatives in oncology discover many potential cancer biomarkers, few transition to clinical applications. This review addresses the current landscape of cancer biomarker discovery and translation with a focus on proteomics and beyond.

Areas covered: The review examines proteomic and genomic techniques for cancer biomarker detection and outlines advantages and challenges of integrating multiple omics approaches to achieve optimal sensitivity and address tumor heterogeneity. This discussion is based on a systematic literature review and direct participation in translational studies.

Expert commentary: Identifying aggressive cancers early on requires improved sensitivity and implementation of biomarkers representative of tumor heterogeneity. During the last decade of genomic and proteomic research, significant advancements have been made in next generation sequencing and mass spectrometry techniques. This in turn has led to a dramatic increase in identification of potential genomic and proteomic cancer biomarkers. However, limited successes have been shown with translation of these discoveries into clinical practice. We believe that the integration of these omics approaches is the most promising molecular tool for comprehensive cancer evaluation, early detection and transition to Precision Medicine in oncology.  相似文献   


3.
4.
5.
Clinical analysis of blood is the most widespread diagnostic procedure in medicine, and blood biomarkers are used to categorize patients and to support treatment decisions. However, existing biomarkers are far from comprehensive and often lack specificity and new ones are being developed at a very slow rate. As described in this review, mass spectrometry (MS)‐based proteomics has become a powerful technology in biological research and it is now poised to allow the characterization of the plasma proteome in great depth. Previous “triangular strategies” aimed at discovering single biomarker candidates in small cohorts, followed by classical immunoassays in much larger validation cohorts. We propose a “rectangular” plasma proteome profiling strategy, in which the proteome patterns of large cohorts are correlated with their phenotypes in health and disease. Translating such concepts into clinical practice will require restructuring several aspects of diagnostic decision‐making, and we discuss some first steps in this direction.  相似文献   

6.
The extraordinary developments made in proteomic technologies in the past decade have enabled investigators to consider designing studies to search for diagnostic and therapeutic biomarkers by scanning complex proteome samples using unbiased methods. The major technology driving these studies is mass spectrometry (MS). The basic premises of most biomarker discovery studies is to use the high data-gathering capabilities of MS to compare biological samples obtained from healthy and disease-afflicted patients and identify proteins that are differentially abundant between the two specimen. To meet the need to compare the abundance of proteins in different samples, a number of quantitative approaches have been developed. In this article, many of these will be described with an emphasis on their advantageous and disadvantageous for the discovery of clinically useful biomarkers.  相似文献   

7.
Urine is an important source of biomarkers. This article reviews current advances, major challenges, and future prospects in the field of urinary proteomics. Because the practical clinical problem is to distinguish diseases with similar symptoms, merely comparing samples from patients of a particular disease to those of healthy individuals is inadequate for finding biomarkers with sufficient diagnostic power. In addition, the variation of expression levels of urinary proteins among healthy individuals and individuals under different physiological conditions adds to the difficulty in identifying biomarkers. We propose that establishing the natural variation in urinary protein expression among a healthy population can serve as a reference to help identify protein abundance changes that are caused by disease, not by individual variations or physiological changes. We also discuss that comparing protein expression levels between urine and plasma may reveal the physiological function of the kidney and that may facilitate biomarker discovery. Finally, we propose that establishing a data-sharing platform for data collection and integrating results from all urinary biomarker studies will help promote the development of urinary proteomics.  相似文献   

8.
Today, proteomics usually compares clinical samples by use of bottom-up profiling with high resolution mass spectrometry, where all protein products of a single gene are considered as an integral whole. At the same time, proteomics of proteoforms, which considers the variety of protein species, offers the potential to discover valuable biomarkers. Proteoforms are protein species that arise as a consequence of genetic polymorphisms, alternative splicing, post-translational modifications and other less-explored molecular events. The comprehensive observation of proteoforms has been an exclusive privilege of top-down proteomics. Here, we review the possibilities of a bottom-up approach to address the microheterogeneity of the human proteome. Special focus is given to shotgun proteomics and structure-based bioinformatics as a source of hypothetical proteoforms, which can potentially be verified by targeted mass spectrometry to determine the relevance of proteoforms to diseases.  相似文献   

9.
Meyer HE  Stühler K 《Proteomics》2007,7(Z1):18-26
Biomarkers allowing early detection of disease or therapy control have a huge influence in curing a disease. A wide variety of methods were applied to find new biomarkers. In contrast to methods focused on DNA or mRNA techniques, approaches considering proteins as potential biomarker candidates have the advantage that proteins are more diverse than DNA or RNA and are more reflective of a biological system. Here, we present an approach for the identification of new biomarkers relying on our experience from the past 10 years of proteomics, outlining a concept of "high-performance proteomics" This approach is based on quantitative proteome analysis using a sufficient number of clinical samples and statistical validation of proteomics data by independent methods, such as Western blot analysis or immunohistochemistry.  相似文献   

10.
11.
Top-down mass spectrometry strategies allow identification and characterization of proteins and protein networks by direct fragmentation. These analytical processes involve a panel of fragmentation mechanisms, some of which preserve protein post-translational modifications. Thus top-down is of special interest in clinical biochemistry to probe modified proteins as potential disease biomarkers. This review describes separating methods, mass spectrometry instrumentation, bioinformatics, and theoretical aspects of fragmentation mechanisms used for top-down analysis. The biological interest of this strategy is extensively reported regarding the characterization of post-translational modifications in biochemical pathways and the discovery of biomarkers. One has to bear in mind that quantitative aspects that are beyond the focus of this review are also of critical important for biomarker discovery. The constant evolution of technologies makes top-down strategies crucial players in clinical and basic proteomics.  相似文献   

12.
In vitro biomarker discovery for atherosclerosis by proteomics   总被引:5,自引:0,他引:5  
The purpose of this study was to identify in vitro and then prioritize a tractable set of protein biomarker candidates of atherosclerosis that may eventually be developed to measure the extent, progression, regression, and stability of atherosclerotic lesions. A study was conducted using an in vitro"foam cell" model based on the stimulation of differentiated THP1 cells with oxidized low-density lipoprotein (oxidized LDL) as compared with low-density lipoprotein (LDL). Analysis of the proteins contained in the cell supernatant using proteome scanning technology identified 59 proteins as being increased, 57 with no statistically measurable difference, and 17 decreasing in abundance following treatment with oxidized LDL, as compared with LDL. From the up-regulated list, proteins were prioritized based on their analytical confidence as well as their relevance to atherosclerosis pathways. Within the group of increased abundance, seven families of proteins were of particular interest: fatty acid-binding proteins, chitinase-like enzymes, cyclophilins, cathepsins, proteoglycans, urokinase-type plasminogen activator receptor, and a macrophage scavenger receptor.  相似文献   

13.
For most cancers, survival rates depend on the early detection of the disease. So far, no biomarkers exist to cope with this difficult task. New proteomic technologies have brought the hope of discovering novel early cancer-specific biomarkers in complex biological samples and/or of the setting up of new clinically relevant test systems. Novel mass spectrometry-(MS) based technologies in particular, such as surface-enhanced laser desorption/ionisation time of flight (SELDI-ToF-MS), have shown promising results in the recent literature. Here, proteomic profiles of control and disease states are compared to find biomarkers for diagnosis. This paper aims to address the authors' own work and that of other groups in clinical cancer proteomics based on SELDI-ToF-MS. Shortcomings and hopes for the future are discussed.  相似文献   

14.
This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.  相似文献   

15.
Cardiovascular disease remains the most common cause of death in the developed world and is predicted by the World Health Organization to kill approximately 20 million people worldwide each year until at least 2015. In light of these figures, work on producing superior tools for clinical use in the cardiovascular field is intensive. As proteins are the primary effectors of cellular function, a significant majority of this work focuses on the role of proteins in the cardiovascular system in physiological and pathological states in order to outline both mechanisms and markers of disease. One of the most effective ways to investigate these on a global basis is through proteomic analysis, which allows for broad spectrum screening of cellular protein or peptide complements during cardiovascular pathogenesis. Furthermore, specific technologies are now available to screen animal model or human blood samples for novel, improved markers of chronic disease states, such as atherosclerosis or for earlier indicators of acute myocardial stress, including ischemia/reperfusion injury and heart failure. This review summarizes current literature on the key aspects of proteomics and peptidomics related to clinical cardiovascular science.  相似文献   

16.
Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

17.
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.  相似文献   

18.
Applied Microbiology and Biotechnology - In the post-genome age, proteomics is receiving significant attention because they provide an invaluable source of biological structures and functions at...  相似文献   

19.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology.Proteomics technologies have evolved to produce larg...  相似文献   

20.
Introduction: Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges.

Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma.

Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号