首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms.  相似文献   

2.
Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.  相似文献   

3.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

4.
Sharrow SD  Novotny MV  Stone MJ 《Biochemistry》2003,42(20):6302-6309
The mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT) binds to an occluded, nonpolar cavity in the mouse major urinary protein-I (MUP-I). The thermodynamics of this interaction have been characterized using isothermal titration calorimetry (ITC). MUP-I-SBT binding is accompanied by a large favorable enthalpy change (DeltaH = -11.2 kcal/mol at 25 degrees C), an unfavorable entropy change (-TDeltaS = 2.8 kcal/mol at 25 degrees C), and a negative heat capacity change [DeltaC(p)() = -165 cal/(mol K)]. Thermodynamic analysis of binding between MUP-I and several 2-alkyl-4,5-dihydrothiazole ligands indicated that the alkyl chain contributes more favorably to the enthalpy and less favorably to the entropy of binding than would be expected on the basis of the hydrophobic desolvation of short-chain alcohols. However, solvent transfer experiments indicated that desolvation of SBT is accompanied by a net unfavorable change in enthalpy (DeltaH = +1.0 kcal/mol) and favorable change in entropy (-TDeltaS = -1.8 kcal/mol). These results are discussed in terms of the possible physical origins of the binding thermodynamics, including (1) hydrophobic desolvation of both the protein and the ligand, (2) formation of a buried water-mediated hydrogen bond network between the protein and ligand, (3) formation of strong van der Waals interactions, and (4) changes in the structure, dynamics, and/or hydration of the protein upon binding.  相似文献   

5.
Glycogen phosphorylase (GP) is a validated target for the treatment of type 2 diabetes. Here we describe highly potent GP inhibitors, AVE5688, AVE2865, and AVE9423. The first two compounds are optimized members of the acyl urea series. The latter represents a novel quinolone class of GP inhibitors, which is introduced in this study. In the enzyme assay, both inhibitor types compete with the physiological activator AMP and act synergistically with glucose. Isothermal titration calorimetry (ITC) shows that the compounds strongly bind to nonphosphorylated, inactive GP (GPb). Binding to phosphorylated, active GP (GPa) is substantially weaker, and the thermodynamic profile reflects a coupled transition to the inactive (tense) conformation. Crystal structures confirm that the three inhibitors bind to the AMP site of tense state GP. These data provide the first direct evidence that acyl urea and quinolone compounds are allosteric inhibitors that selectively bind to and stabilize the inactive conformation of the enzyme. Furthermore, ITC reveals markedly different thermodynamic contributions to inhibitor potency that can be related to the binding modes observed in the cocrystal structures. For AVE5688, which occupies only the lower part of the bifurcated AMP site, binding to GPb (Kd = 170 nM) is exclusively enthalpic (Delta H = -9.0 kcal/mol, TDelta S = 0.3 kcal/mol). The inhibitors AVE2865 (Kd = 9 nM, Delta H = -6.8 kcal/mol, TDelta S = 4.2 kcal/mol) and AVE9423 (Kd = 24 nM, Delta H = -5.9 kcal/mol, TDelta S = 4.6 kcal/mol) fully exploit the volume of the binding pocket. Their pronounced binding entropy can be attributed to the extensive displacement of solvent molecules as well as to ionic interactions with the phosphate recognition site.  相似文献   

6.
The function of peroxiredoxins in plant organelle redox metabolism   总被引:1,自引:0,他引:1  
In 1996, cDNA sequences referred to as plant peroxiredoxins (Prx), i.e. a 1-Cys Prx and a 2-Cys Prx, were reported from barley. Ten years of research have advanced our understanding of plant Prx as thiol-based peroxide reductases with a broad substrate specificity, ranging from hydrogen peroxide to alkyl hydroperoxides and peroxinitrite. Prx have several features in common. (i) They are abundant proteins that are routinely detected in proteomics approaches. (ii) They interact with proteins such as glutaredoxins, thioredoxins, and cyclophilins as reductants, but also non-dithiol-disulphide exchange proteins. By work with transgenic plants, their activity was shown to (iii) affect metabolic integrity, (iv) protect DNA from damage in vitro and as shown here in vivo, and (v) modulate intracellular signalling related to reactive oxygen species and reactive nitrogen species. (vi) In all organisms Prx are encoded by small gene families that are of particular complexity in higher plants. A comparison of the Prx gene families in rice and Arabidopsis thaliana supports previous suggestions on Prx function in specific subcellular and metabolic context. (vii) Prx gene expression and activity are subjected to complex regulation realized by an integration of various signalling pathways. 2-Cys Prx expression depends on redox signals, abscisic acid, and protein kinase cascades. Besides these general properties, the chloroplast Prx have acquired specific roles in the context of photosynthesis. The thioredoxin-dependent peroxidase activity can be measured in crude plant extracts and contributes significantly to the overall H(2)O(2) detoxification capacity. Thus organellar Prx proteins enable an alternative water-water cycle for detoxification of photochemically produced H(2)O(2), which acts independently from the ascorbate-dependent Asada-Halliwell-Foyer cycle. 2-Cys Prx and Prx Q associate with thylakoid membrane components. The mitochondrial PrxII F is essential for root growth under stress. Following a more general introduction, the paper summarizes present knowledge on plant organellar Prx, addressing Prx in signalling, and also suggests some lines for future research.  相似文献   

7.
Isothiocyanates are phytochemicals with anti-cancer properties that include the ability to trigger apoptosis. A substantial body of evidence suggests that reaction of the electrophilic isothiocyanate moiety with cysteine residues in cellular proteins and glutathione accounts for their biological activity. In this study we investigated the effect of several different isothiocyanates on the redox states of the cysteine-dependent peroxiredoxins (Prx) in Jurkat T lymphoma cells, and compared this to known effects on the selenoprotein thioredoxin reductase, glutathione reductase and intracellular GSH levels. Interestingly, oxidation of mitochondrial Prx3 could be detected as early as 5 min after exposure of cells to phenethyl isothiocyanate, with complete oxidation occurring at doses that only had small inhibitory effects on total cellular thioredoxin reductase and glutathione reductase activities. Peroxiredoxin oxidation was specific to the mitochondrial isoform with cytoplasmic Prx1 and Prx2 maintained in their reduced forms at all analyzed time points and concentrations of isothiocyanate. Phenethyl isothiocyanate could react with purified Prx3 directly, but it did not oxidize Prx3 or promote its oxidation by hydrogen peroxide. A selection of aromatic and alkyl isothiocyanates were tested and while all lowered cellular GSH levels, only the isothiocyanates that caused Prx3 oxidation were able to trigger cell death. We propose that pro-apoptotic isothiocyanates selectively disrupt mitochondrial redox homeostasis, as indicated by Prx3 oxidation, and that this contributes to their pro-apoptotic activity.  相似文献   

8.
Peroxiredoxins (Prx) are widely distributed and abundant proteins, which control peroxide concentrations and related signaling mechanisms. Prx1 is found in the cytoplasm and nucleus, but little is known about compartmentalized Prx1 function during redox signaling and oxidative stress. We targeted expression vectors to increase Prx1 in nuclei (NLS-Prx1) and cytoplasm (NES-Prx1) in HeLa cells. Results showed that NES-Prx1 inhibited NF-kappaB activation and nuclear translocation. In contrast, increased NLS-Prx1 did not affect NF-kappaB nuclear translocation but increased activity of a NF-kappaB reporter. Both NLS-Prx1 and NES-Prx1 inhibited NF-kappaB p50 oxidation, suggesting that oxidation of the redox-sensitive cysteine in p50's DNA-binding domain is regulated via peroxide metabolism in both compartments. Interestingly, following treatment with H(2)O(2), nuclear thioredoxin-1 (Trx1) redox status was protected by NLS-Prx1, and cytoplasmic Trx1 was protected by NES-Prx1. Compartmental differences from increasing Prx1 show that the redox poise of cytoplasmic and nuclear thiol systems can be dynamically controlled through peroxide elimination. Such spatial resolution and protein-specific redox differences imply that the balance of peroxide generation/metabolism in microcompartments provides an important specific component of redox signaling.  相似文献   

9.
New understanding of the engineering and allosteric regulation of natural protein conformational switches (such as those that couple chemical and ionic signals, mechanical force, and electro/chemical free energy for biochemical activation, catalysis, and motion) can be derived from simple de novo designed synthetic protein models (maquettes). We demonstrate proof of principle of both reversible switch action and allosteric regulation in a tetra-alpha-helical bundle protein composed of two identical di-helical subunits containing heme coordinated at a specific position close to the disulfide loop region. Individual bundles assume one of two switch states related by large-scale mechanical changes: a syn-topology (helices of the different subunits parallel) or anti-topology (helices antiparallel). Both the spectral properties of a coproporphyrin probe appended to the loop region and the distance-dependent redox interaction between the hemes identify the topologies. Beginning from a syn-topology, introduction of ferric heme in each subunit (either binding or redox change) shifts the topological balance by 25-50-fold (1.9-2.3 kcal/mol) to an anti-dominance. Charge repulsion between the two internal cationic ferric hemes drives the syn- to anti-switch, as demonstrated in two ways. When fixed in the syn-topology, the second ferric heme binding is 25-80-fold (1.9-2.6 kcal/mol) weaker than the first, and adjacent heme redox potentials are split by 80 mV (1.85 kcal/mol), values that energetically match the shift in topological balance. Allosteric and cooperative regulation of the switch by ionic strength exploits the shielded charge interactions between the two hemes and the exposed, cooperative interactions between the coproporphyrin carboxylates.  相似文献   

10.
Proteins containing phosphorylated Ser/Thr-Pro motifs play key roles in numerous regulatory processes in the cell. The peptidyl prolyl cis/trans isomerase Pin1 specifically catalyzes the conformational transition of phosphorylated Ser/Thr-Pro motifs. Here we report the direct analysis of the thermodynamic properties of the interaction of the PPIase Pin1 with its substrate-analogue inhibitor Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2 specifically targeted to the PPIase active site based on the combination of isothermal titration calorimetry and studies on inhibition of enzymatic activity of wt Pin1 and active site variants. Determination of the thermodynamic parameters revealed an enthalpically and entropically favored interaction characterized by binding enthalpy deltaH(ITC) of -6.3 +/- 0.1 kcal mol(-1) and a TdeltaS(ITC) of 4.1 +/- 0.1 kcal mol(-1). The resulting dissociation constant KD for binding of the peptidic inhibitor with 1.8 x 10(-8) M resembles the dissociation constant of a Pin1 substrate in the transition state, suggesting a transition state analogue conformation of the bound inhibitor. The strongly decreased affinity of Pin1 for ligand at increasing ionic strength implicates that the potential of bidentate binding of a substrate protein by the PPIase and the WW domain of Pin1 may be required to deploy improved efficiency and specificity of Pin1 under conditions of physiological ionic strength.  相似文献   

11.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3888-3892
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed.  相似文献   

12.
Two new parameters, I: and C:, are introduced for the quantitative evaluation of functional chimeras: I: (impact) and C: (context dependence) are the free energy difference and sum, respectively, of the effects on a given property measured in forward and retro chimeras. The forward chimera is made by substitution of a part "a" from ensemble A into the analogous position of homologous ensemble B (S:(B --> A)). The C: value is a measure of the interaction of the interrogated position with its surroundings, whereas I: is an expression of the quantitative importance of the probed position. Both I: and C: vary with the evaluated property, for example, kinetics, binding, thermostability, and so forth. The retro chimera is the reverse substitution of the analogous part "b" from B into A, S:(A --> B). The I: and C: values derived from original data for forward and retro mutations in aspartate and tyrosine aminotransferase, from literature data for quasi domain exchange in oncomodulin and for the interaction of Tat with bovine and human TAR are evaluated. The most salient derived conclusions are, first, that Thr 109 (AATase) or Ser 109 (TATase) is an important discriminator for dicarboxylic acid selectivity by these two enzymes (I: < -2.9 kcal/mol). The T109S mutation in AATase produces a nearly equal and opposite effect to S109T in TATase (C: < 0.4 kcal/mol). Second, an I: value of 5.5 kcal/mol describes the effects of mirror mutations D94S (site 1) and S55D (site 2) in the Ca(2+) binding sites of oncomodulin on Ca(2+) affinity. The second mirror set, G98D (site 1) and D59G (site 2), yields a smaller impact (I: = -3.4 kcal/mol) on Ca(2+) binding; however, the effect is significantly more nearly context independent (C: = -0.6 versus C: = -2.7 kcal/mol). Third, the stem and loop regions of HIV and BIV TAR are predominantly responsible for the species specific interaction with BIV Tat(65-81) (I: = -1.5 to -1.6 kcal/mol), whereas I: = 0.1 kcal/mol for bulge TAR chimeras. The C: values are from -0.3 to -1.2 kcal/mol. The analysis described should have important applications to protein design.  相似文献   

13.
Menze MA  Hellmann N  Decker H  Grieshaber MK 《Biochemistry》2000,39(35):10806-10811
Hemocyanin serves as an oxygen carrier in the hemolymph of the European lobster Homarus vulgaris. The oxygen binding behavior of the pigment is modulated by metabolic effectors such as lactate and urate. Urate and caffeine binding to 12-meric hemocyanin (H. vulgaris) was studied using isothermal titration calorimetry (ITC). Binding isotherms were determined for fully oxygenated hemocyanin between pH 7.55 and 8.15. No pH dependence of the binding parameters could be found for either effector. Since the magnitude of the Bohr effect depends on the urate concentration, the absence of any pH dependence of urate and caffeine binding to oxygenated hemocyanin suggests two conformations of the pigment under deoxygenated conditions. Urate binds to two identical binding sites (n = 2) each with a microscopic binding constant K of 8500 M(-1) and an enthalpy change DeltaH degrees of -32.3 kcal mol(-1). Caffeine binds cooperatively to hemocyanin with two microscopic binding constants: K(1) = 14 100 M(-1) and K(2) = 40 400 M(-1). The corresponding enthalpy changes in binding are as follows: DeltaH degrees (1) = -23.3 kcal mol(-1) and DeltaH degrees (2) = -27.1 kcal mol(-1). The comparison of urate and caffeine binding to the oxygenated pigment indicates the existence of two protein conformations for oxygen-saturated hemocyanin. Since effector binding is not influenced by protons, four different conformations are required to create a convincing explanation for caffeine and urate binding curves. This was predicted earlier on the basis of the analysis of oxygen binding to lobster hemocyanin, employing the nesting model.  相似文献   

14.
Aluminum is a known neurotoxic agent and its neurotoxic effects may be due to its binding to DNA. However, the mechanism for the interaction of aluminum ions with DNA is not well understood. Here, we report the application of isothermal titration calorimetry (ITC), fluorescence spectroscopy, and UV spectroscopy to investigate the thermodynamics of the binding of aluminum ions to calf thymus DNA (CT DNA) under various pH and temperature conditions. The binding reaction is driven entirely by a large favorable entropy increase but with an unfavorable enthalpy increase in the pH range of 3.5-5.5 and at all temperatures examined. Aluminum ions show a strong and pH-dependent binding affinity to CT DNA, and a large positive molar heat capacity change for the binding, 1.57 kcal mol(-1) K(-1), demonstrates the burial of the polar surface of CT DNA upon groove binding. The fluorescence of ethidium bromide bound to CT DNA is quenched by aluminum ions in a dynamic way. Both Stern-Volmer quenching constant and the binding constant increase with the increase of the pH values, reaching a maximum at pH 4.5, and decline with further increasing the pH to 5.5. At pH 6.0 and 7.0, aluminum ions precipitate CT DNA completely and no binding of aluminum ions to CT DNA is observed by ITC. Combining the results from these three methods, we conclude that aluminum ions bind to CT DNA with high affinity through groove binding under aluminum toxicity pH conditions and precipitate CT DNA under physiological conditions.  相似文献   

15.
Sulfiredoxin (Srx) couples the energy of ATP hydrolysis to the energetically unfavorable process of reducing the inactive sulfinic form of 2-cysteine peroxiredoxins (Prxs) to regenerate its active form. In plants, Srx as well as typical 2-cysteine Prx have been considered as enzymes with exclusive chloroplast localization. This work explores the subcellular localization of Srx in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana). Immunocytochemistry, analysis of protein extracts from isolated intact organelles, and cell-free posttranslational import assays demonstrated that plant Srx also localizes to the mitochondrion in addition to plastids. The dual localization was in line with the prediction of a signal peptide for dual targeting. Activity tests and microcalorimetric data proved the interaction between Srx and its mitochondrial targets Prx IIF and thioredoxin. Srx catalyzed the retroreduction of the inactive sulfinic form of atypical Prx IIF using thioredoxin as reducing agent. Arabidopsis Srx also reduced overoxidized human Prx V. These results suggest that plant Srx could play a crucial role in the regulation of Prx IIF activity by controlling the regeneration of its overoxidized form in mitochondria, which are sites of efficient reactive oxygen species production in plants.  相似文献   

16.
Blasie CA  Berg JM 《Biochemistry》2004,43(32):10600-10604
Zinc(II) and cobalt(II) binding to a series of zinc finger peptides with different charged residue pairs across from one another in a beta-sheet were examined. Previous studies revealed a narrow range of interaction free energies (<0.5 kcal/mol) between these residues. Here, isothermal titration calorimetry studies were performed, revealing a range of over 3 kcal/mol in relative binding enthalpies. Double mutant cycle analysis revealed a range of interaction enthalpies ranging from -3.1 to -3.4 kcal/mol for the Arg-Asp pair to -0.8 kcal/mol for the Lys-Glu pair. The large range of interaction enthalpies coupled with the small range of interaction free energies reveals substantial entropy-enthalpy compensation. The magnitudes of the effects are consistent with the formation of a structurally rigid Arg-Asp contact ion pair but less direct and more mobile interactions involving the other combinations.  相似文献   

17.
The thermodynamics of self-assembly of a 14 base pair DNA double helix from complementary strands have been investigated by titration (ITC) and differential scanning (DSC) calorimetry, in conjunction with van't Hoff analysis of UV thermal scans of individual strands. These studies demonstrate that thermodynamic characterization of the temperature-dependent contributions of coupled conformational equilibria in the individual "denatured" strands and in the duplex is essential to understand the origins of duplex stability and to derive stability prediction schemes of general applicability. ITC studies of strand association at 293 K and 120 mM Na+ yield an enthalpy change of -73 +/- 2 kcal (mol of duplex)-1. ITC studies between 282 and 312 K at 20, 50, and 120 mM Na+ show that the enthalpy of duplex formation is only weakly salt concentration-dependent but is very strongly temperature-dependent, decreasing approximately linearly with increasing temperature with a heat capacity change (282-312 K) of -1.3 +/- 0.1 kcal K-1 (mol of duplex)-1. From DSC denaturation studies in 120 mM Na+, we obtain an enthalpy of duplex formation of -120 +/- 5 kcal (mol of duplex)-1 and an estimate of the corresponding heat capacity change of -0.8 +/- 0.4 kcal K-1 (mol of duplex)-1 at the Tm of 339 K. van't Hoff analysis of UV thermal scans on the individual strands indicates that single helix formation is noncooperative with a temperature-independent enthalpy change of -5.5 +/- 0.5 kcal at 120 mM Na+. From these observed enthalpy and heat capacity changes, we obtain the corresponding thermodynamic quantities for two fundamental processes: (i) formation of single helices from disordered strands, involving only intrastrand (vertical) interactions between neighboring bases; and (ii) formation of double helices by association (docking) of single helical strands, involving interstrand (horizontal and vertical) interactions. At 293 K and 120 mM Na+, we calculate that the enthalpy change for association of single helical strands is approximately -64 kcal (mol of duplex)-1 as compared to -210 kcal (mol of duplex)-1 calculated for duplex formation from completely unstructured single strands and to the experimental ITC value of -73 kcal (mol of duplex)-1. The intrinsic heat capacity change for association of single helical strands to form the duplex is found to be small and positive [ approximately 0.1 kcal K-1 (mol of duplex)-1], in agreement with the result of a surface area analysis, which also predicts an undetectably small heat capacity change for single helix formation.  相似文献   

18.
Immunoglobulins of human heavy chain subgroup III have a binding site for Staphylococcal protein A on the heavy chain variable domain (V(H)), in addition to the well-known binding site on the Fc portion of the antibody. Thermodynamic characterization of this binding event and localization of the Fv-binding site on a domain of protein A is described. Isothermal titration calorimetry (ITC) was used to characterize the interaction between protein A or fragments of protein A and variants of the hu4D5 antibody Fab fragment. Analysis of binding isotherms obtained for titration of hu4D5 Fab with intact protein A suggests that 3-4 of the five immunoglobulin binding domains of full length protein A can bind simultaneously to Fab with a Ka of 5.5+/-0.5 x 10(5) M(-1). A synthetic single immunoglobulin binding domain, Z-domain, does not bind appreciably to hu4D5 Fab, but both the E and D domains are functional for hu4D5 Fab binding. Thermodynamic parameters for titration of the E-domain with hu4D5 Fab are n = 1.0+/-0.1, Ka = 2.0+/-0.3 x 10(5) M(-1), and deltaH = -7.1+/-0.4 kcal mol(-1). Similar binding thermodynamics are obtained for titration of the isolated V(H) domain with E-domain indicating that the E-domain binding site on Fab resides within V(H). E-domain binding to an IgG1 Fc yields a higher affinity interaction with thermodynamic parameters n = 2.2+/-0.1, Ka > 1.0 x 10(7) M(-1), and deltaH = -24.6+/-0.6 kcal mol(-1). Fc does not compete with Fab for binding to E-domain indicating that the two antibody fragments bind to different sites. Amide 1H and 15N resonances that undergo large changes in NMR chemical shift upon Fv binding map to a surface defined by helix-2 and helix-3 of E-domain, distinct from the Fc-binding site observed in the crystal structure of the B-domain/Fc complex. The Fv-binding region contains negatively charged residues and a small hydrophobic patch which complements the basic surface of the region of the V(H) domain implicated previously in protein A binding.  相似文献   

19.
J Carey  O C Uhlenbeck 《Biochemistry》1983,22(11):2610-2615
A filter retention assay is used to examine the kinetic and equilibrium properties of the interaction between phage R17 coat protein and its 21-nucleotide RNA binding site. The kinetics of the reaction are consistent with the equilibrium association constant and indicate a diffusion-controlled reaction. The temperature dependence of Ka gives delta H = -19 kcal/mol. This large favorable delta H is partially offset by a delta S = -30 cal mol-1 deg-1 to give a delta G = -11 kcal/mol at 2 degrees C in 0.19 M salt. The binding reaction has a pH optimum centered around pH 8.5, but pH has no effect on delta H. While the interaction is insensitive to the type of monovalent cation, the affinity decreases with the lyotropic series among monovalent anions. The ionic strength dependence of Ka reveals that ionic contacts contribute to the interaction. Most of the binding free energy, however, is a result of nonelectrostatic interactions.  相似文献   

20.
Leesch VW  Bujons J  Mauk AG  Hoffman BM 《Biochemistry》2000,39(33):10132-10139
Cytochrome c peroxidase (CcP) can bind as many as two cytochrome c (Cc) molecules in an electrostatic complex. The location of the two binding domains on CcP has been probed by photoinduced interprotein electron transfer (ET) between zinc-substituted horse cytochrome c (ZnCc) and CcP with surface charge-reversal mutations and by isothermal titration calorimetry (ITC). These results, which are the first experimental evidence for the location of domain 2, indicate that the weak-binding domain includes residues 146-150 on CcP. CcP(E290K) has a charge-reversal mutation in the tight-binding domain, which should weaken binding, and it weakens the 1:1 complex; K(1) decreases 20-fold at 18 mM ionic strength. We have employed two mutations to probe the proposed location for the weak-binding domain on the CcP surface: (i) D148K, a "detrimental" mutation with a net (+2) change in the charge of CcP, and (ii) K149E, a "beneficial" mutation with a net (-2) change in the charge. The interactions between FeCc and CcP(WT and K149E) also have been studied with ITC. The CcP(D148K) mutation causes no substantial change in the 2:1 binding but an increase in the reactivity of the 2:1 complex. The latter can be interpreted as a long-range influence on the heme environment or, more likely, the enhancement of a minority subset of binding conformations with favorable pathways for ET. CcP(K149E) has a charge-reversal mutation in the weak-binding domain that produces a substantial increase in the 2:1 binding constant as measured by both quenching and ITC. For the 1:1 complex of CcP(WT), DeltaG(1) = -8.2 kcal/mol (K(1) = 1.3 x 10(6) M(-)(1)), DeltaH(1) = +2.7 kcal/mol, and DeltaS(1) = +37 cal/K.mol at 293 K; for the second binding stage, K(2) < 5 x 10(3) M(-)(1), but accurate thermodynamic parameters were not obtained. For the 1:1 complex of CcP(K149E), DeltaG(1) = -8.5 kcal/mol (K(1) = 2 x 10(6) M(-)(1)), DeltaH(1) = +2. 0 kcal/mol, and DeltaS(1) = +36 cal/K.mol; for the second stage, DeltaG(2) = -5.5 kcal/mol (K(1) = 1.3 x 10(4) M(-)(1)), DeltaH(2) = +2.9 kcal/mol, and DeltaS(2) = +29 cal/K.mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号