首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
缺水与补水对小麦氮素吸收及土壤残留氮的影响   总被引:17,自引:1,他引:17  
通过温室培养试验,研究了不同生长期缺水和补充灌水对冬小麦氮素吸收利用和土壤残留的影响.结果表明,在不同生长期缺水及分蘖期补充灌水均能显著降低冬小麦的氮素吸收,增加矿质态氮的土壤残留,土壤残留氮含量介于79.8~113.7mg·kg^-1;越冬、拔节、灌浆期补充灌水可显著提高冬小麦对土壤氮素的吸收能力,不同程度地降低氮素残留,土壤残留氮介于47.2~60.3mg·kg^-1.补充灌水引起的小麦吸氮能力提高与其对氮素的有效利用并不一致.越冬期补水,小麦籽粒吸氮量无显著变化;灌浆期补水,籽粒吸氮量相应提高20.9%;拔节期补水反而使籽粒吸氮量降低19.6%.  相似文献   

2.
高山林线变化的更新受限机制研究进展   总被引:1,自引:0,他引:1  
沈维  张林  罗天祥 《生态学报》2017,37(9):2858-2868
全球林线位置对气候变暖的响应表现为上升、无变化或下降等截然不同趋势,表明影响林线位置及动态的因子十分复杂,除了较普遍认为的低温调控机制外,还存在其它控制林线位置变化的机制。林线向上迁移开始于种子向林线以上的传播及幼苗在林线以上的定居,这些过程中的限制因子均会影响林线的位移,因此研究更新过程及其限制因子对理解高山林线对气候变化的响应具有重要的科学意义。主要从种子和幼苗两个关键阶段综述高山林线森林更新的研究进展。在种子阶段,夏季积温不足导致种子产量和活力下降,风速过低和浓密灌丛限制种子向林线以上传播,近地表的霜冻/水分胁迫和灌木释放的化感物质会阻碍种子在林线以上萌发。在幼苗阶段,除冬季低温外,生长季内较大的温度日振幅和偶然出现的冻害事件也是导致幼苗死亡的重要原因,而低温环境下的强烈光照引起的低温光抑制会显著降低生长季的光合作用;土壤低温、由土壤温度昼夜变化引起的冻举事件、夏季土壤干旱可能会导致幼苗光合作用下降和死亡率上升;积雪太浅会导致生长季早期幼苗水分供应的严重缺乏,但积雪太深会导致幼苗感染真菌的可能性增加;浓密的灌木和草本植物以及植食动物的啃食也会降低林线以上的幼苗存活率。气候变暖对林线幼苗定居的影响复杂且具有很大不确定性,需要进一步研究气候变暖导致的环境因子变化对林线更新各关键阶段的影响。未来气候变暖无疑会导致生长季起始日提前,结束日推迟,这很可能会增加生长季期间尤其是早期的低温冻害事件,对高山林线树种幼苗的存活具有重要影响。在未来研究中,需要找出定义生长季冻害事件的温度阈值,利用长期气象观测数据分析增温背景下生长季早期冻害事件特征的变化趋势,并进一步开展野外模拟增温实验以深刻理解林线树种的种子萌发和幼苗定居与生长季冻害事件的关系,加强对不同地区林线树种的繁殖策略研究,这将有助于人们进一步理解不同区域林线的形成机制并预测未来气候变化条件下林线的动态变化趋势。  相似文献   

3.
高山林线形成机制及假说的探讨   总被引:1,自引:0,他引:1  
高山林线作为森林向苔原过渡的敏感带,历来被生态学家视为生态脆弱区、外界干扰信号的放大器和全球变化重要的预警区.20世纪80年代开始,许多研究关注全球变化对高山林线的影响,这一阶段针对林线海拔高度、纬度位置之间的关系及对未来热环境的响应研究已成为众多学者研究的焦点之一.众多学者依据自身研究目的、不同树种出现上限的原因、局部上影响林木的因子间的差异,在区域上对高山林线的形成机制的提出了诸多假说.本文针对这些假说进行了综述和探讨,并就其中不足之处提出质疑,提出今后需要深入研究的几个方向.
Abstract:
As a sensitive transitional zone between forest and tundra, timberline has always been considered by ecologists to be an ecologically fragile zone, an amplifier of outside interference signals, and a global climate change early warning zone. Since the 1980s, many studies have been made on the effects of global climate change on alpine timberline, mainly addressed the re-lationships of the upper limits of timberline with altitude and latitude, and in particular, the re-sponses of timberline location to global warming. Several hypotheses were proposed to examine the timberline formation of various tree species affected by environmental factors. This paper sum-marized these hypotheses, and discussed some potential studies in the future.  相似文献   

4.
川西高山林线土壤活性碳、氮对短期增温的响应   总被引:1,自引:0,他引:1  
随着温室效应的加剧,受低温限制的高山林线生态系统对全球气候变暖较为敏感,可能直接影响到植物的生长和土壤碳氮过程.本研究假设气候变暖会改变高山生态系统土壤活性碳氮含量,在四川省理县米亚罗高山生态系统定位站,采用开顶式模拟增温装置(OTC)模拟增温对土壤活性碳、氮的短期影响.分别于2017年4、7和10月,采集OTC以及对照样地(CK)内土壤有机层和矿质土壤层的原状土壤,测定土壤可溶性有机碳(DOC)、土壤微生物生物量碳(MBC)、土壤可溶性有机氮(DON)和土壤微生物生物量氮(MBN)含量.结果表明: 模拟增温使年均气温升高0.88 ℃,土壤有机层和矿质土壤层的年均温度分别提高0.48和0.23 ℃.模拟增温没有显著改变土壤有机质和含水量,但显著提高了矿质土壤层的pH值,同时显著降低了非生长季矿质土壤层的DOC、DON含量;季节变化对两个层次的DOC、DON和MBN含量有极显著影响,而MBC没有明显的季节动态;增温和季节交互作用对矿质土壤层的DOC和DON有显著影响.土壤有机层的MBC、MBN含量显著高于矿质土壤层.土壤活性碳、氮与土壤有机质和含水量呈极显著正相关,MBC、MBN与土壤pH呈极显著正相关,MBN与土壤温度呈显著负相关.  相似文献   

5.
陈贝贝  匡文浓  姜俊  赵秀海  何怀江 《生态学报》2021,41(11):4469-4475
为了解长白山次生杨桦林中优势更新幼苗的空间分布及其与环境因子之间的关系,以5.2 hm2(200 m×260 m)固定样地更新幼苗的全面定位调查和环境因子调查本底数据为基础,对样地内个体数量排序前5的优势更新幼苗进行分析。结果表明:在中小距离尺度上,水曲柳(Fraxinus mandshurica)(0-90 m)、色木槭(Acer mono)(0-60 m)、紫椴(Tilia amurensis)(0-60 m、90-150 m)和假色槭(Acer pseudo-sieboldianums)(0-90 m)更新幼苗的空间分布关系为显著正自相关,呈聚集性分布;群落水平上,环境变量和空间变量对5种优势更新幼苗的空间分布变异解释能力为61%,其中,纯粹空间变量的解释度为56%,而纯粹环境变量的解释度不足1%;种群水平上,环境因子对更新幼苗的空间分布有一定影响,其中,水曲柳幼苗的空间分布与土壤有机质、土壤全钾和土壤水分显著相关,色木槭幼苗的空间分布与土壤有机质和土壤全磷显著相关,紫椴幼苗的空间分布与土壤全磷显著相关,假色槭幼苗的空间分布与土壤水分显著相关;簇毛槭(Acer barbinerve)幼苗的空间分布与环境因子未表现出显著的相关性。长白山次生杨桦林中优势更新幼苗多为聚集性分布,环境因子对其分布有一定影响。  相似文献   

6.
森林幼苗更新对光环境异质性的响应研究进展   总被引:28,自引:1,他引:28  
在分析森林光环境异质性特点的基础上,从幼苗的光合、热耗散、生物量累积和分配、形态特征、萌发和种群动态等方面综述了国内外在森林幼苗更新对光环境异质性响应的研究进展.从森林物种多样性维持、森林演替和植被恢复角度探讨了幼苗更新对光环境异质性不同响应的生态学意义,并对今后该方面研究提出建议.  相似文献   

7.
城乡交错区具有显著的边缘效应,与城市之间在资源上有互补性、生态上有共生性、经济上和发展上有相依性,是城市生态的稳衡器和城市进一步发展的基础。贺州作为生态资源优势明显的全国“多规合一”规划试点市县之一,要用可持续发展和景观生态学理论指导市域城乡交错区的建设, 在系统和整体的层次上构建一系列优化的生态结构模式, 形成绿色林地农田、绿色街道及居住小区为基质, 以特色建筑、基塘、湖泊、街区绿地为镶嵌体, 以道路及其绿化带、河涌、溪流沟渠为廓道, 谐调有序、持续高效的生态景观格局。应采取进一步加强环境教育, 提高公众环境意识, 加强土地利用规划和村镇建设规划, 严格环境管理, 加快推行生态工业和生态农业等一系列对策措施, 确保生态建设目标的实现。  相似文献   

8.
浙江省木本植物区系特征及其与引种驯化的关系   总被引:4,自引:0,他引:4  
本文对浙江省木本植物区系特征进行分析,探讨该省木本植物区系与引种驯化的关系,旨在为园林工作者更好地开展引种驯化工作、切实提高引种成功率提供参考。  相似文献   

9.
中国东北样带土壤氮的分布特征及其对气候变化的响应   总被引:11,自引:0,他引:11  
根据2001年中国东北样带土壤全氮和有效氮的实测数据,结合CO2浓度倍增与不同土壤湿度的模拟试验数据,对土壤全氮和有效氮的梯度分布、影响因子分析及其对气候变化的响应进行研究.结果表明,样带土壤表层全氮和有效氮的梯度分布与土壤有机碳的分布基本一致:沿经度呈现东高西低的趋势,局部由于土壤退化而出现低谷.土壤全氮的剖面分布和土壤有机碳相似,而土壤有效氮则有所不同.样带土壤全氮和有效氮与土壤pH、有机碳、全磷、全硫、全锌、土壤活性碳、有效磷、有效钾、有效锰、有效锌、土壤容重、田间持水量、土壤总孔度等因子均呈显著或极显著的相关关系.样带土壤全氮和有效氮与降雨量之间呈极显著的正相关关系(r=0.682,P<0.001和0.688,P<0.001).短期培养试验中,CO2浓度倍增和不同土壤湿度下土壤全氮和有效氮的变异较小(变异系数分别是5.55%和3.84%),但可反映一定的变化趋势.  相似文献   

10.
长白山云冷杉林幼苗幼树空间分布格局及其更新特征   总被引:5,自引:0,他引:5  
杨华  李艳丽  沈林  亢新刚  岳刚  王妍 《生态学报》2014,34(24):7311-7319
长白山云冷杉针阔混交林是我国东北主要的森林类型之一,其乔木树种幼苗幼树的结构和动态决定着未来林分的结构和生长动态。在长白山地区设置一块具有代表性的云冷杉针阔混交林幼苗幼树更新样地,统计分析幼苗幼树更新特征,绘制地径结构图、树高结构图及其空间分布图。运用点格局分析中的单变量O-ring统计方法,分析更新树种的空间分布格局;用双变量O-ring统计方法,分析更新树种种间的空间关联性。研究结果表明:(1)更新树种组成有冷杉(Abies nephrolepis)、色木槭(Acer mono)、紫椴(Tilia amurensis)、红皮云杉(Picea koraiensis)、红松(Pinus koraiensis)、蒙古栎(Quercus mongolica)、春榆(Ulmus japonica)7种,其中以冷杉、色木槭为主,更新幼苗幼树的地径近似呈倒J型分布,树高结构近似呈双峰分布;(2)所有更新树种、冷杉、色木槭在小尺度1—10 m的范围内呈聚集分布,随着尺度增加,聚集程度减弱,逐渐趋于均匀分布和随机分布,紫椴、云杉和红松在空间所有尺度上以随机分布为主;(3)更新树种之间的空间关联性在小尺度范围上正关联性比较多,较大尺度范围上负关联性比较多,随着尺度增加,空间关联性减弱。  相似文献   

11.
树线交错带是具有强烈生物交互作用的高寒生态过渡带,生物互作与树线生态过程密切相关。本研究系统综述了气候变化下植物间、动植物间和微生物与植物间互作因子对树线生态过程的影响。植物间互利或竞争作用的强度调控变暖背景下树线生态过程的变化,目前尚缺少树轮生态学证据,且亟待检验高阶互作的适用性;动物采食活动、微生物与植物间互作可通过影响土壤状况、改变树木生长和更新等生态过程动态,增强或削弱树线与气候间耦合关系。迄今为止,地下与地上过程联系如何影响气候变暖下的树线动态尚不明晰,而营养级间互作可能调制树线生态过程对气候响应。青藏高原等高寒区具有开展此类研究的优势与潜力。  相似文献   

12.
郑娇  李东  袁旭东  赵小祥  刘峰  田秋香 《生态学报》2023,43(21):8704-8715
树线过渡带作为高山地区重要的生态过渡带之一,是响应温度变化的敏感区域。树线过渡带内土壤碳储量丰富,其碳周转在全球碳循环方面扮演着重要角色。探究树线过渡带土壤有机碳矿化及其温度敏感性,对于预测气候变化背景下高山地区土壤碳循环过程具有重要的指导意义。为此以青藏高原东南部贡嘎山树线过渡带(森林、树线、灌丛)的土壤为对象,在室内开展90 d不同温度(15℃和20℃)的培养实验,测定土壤有机碳矿化速率,计算单位土壤有机碳累积矿化量、温度敏感性,并分析影响它们的相关因素。结果表明:土壤有机碳矿化速率受温度和样地类型的显著影响。升温显著增加土壤有机碳矿化速率,而不同样地类型间矿化速率差异显著,矿化速率大小表现为森林>树线>灌丛。本研究用单位土壤有机碳累积矿化量表征土壤有机碳的稳定性,经90 d的培养,15℃下树线过渡带从森林、树线到灌丛单位土壤有机碳累积矿化量分别为12.33 mg/g、12.99 mg/g和10.53 mg/g, 20℃下则分别为19.16 mg/g、21.14 mg/g和16.26 mg/g,灌丛土壤单位土壤有机碳累积矿化量显著低于森林和树线土壤,这表明灌丛土壤具备更...  相似文献   

13.
Mountain birch, Betula pubescens ssp. tortuosa, forms the treeline in northern Sweden. A recent shift in the range of the species associated with an elevation of the treeline is commonly attributed to climate warming. Using microsatellite markers, we explored the genetic structure of populations along an altitudinal gradient close to the treeline. Low genetic differentiation was found between populations, whereas high genetic diversity was maintained within populations. High level of gene flow compensated for possible losses of genetic diversity at higher elevations and dissipated the founding effect of newly established populations above the treeline. Spatial autocorrelation analysis showed low spatial genetic structure within populations because of extensive gene flow. At the treeline, significant genetic structure within the juvenile age class at small distances did not persist in the adult age class, indicating recent expansion of young recruits due to the warming of the climate. Finally, seedling performance above the treeline was positively correlated with parameters related to temperature. These data confirm the high migration potential of the species in response to fluctuating environmental conditions and indicate that it is now invading higher altitudes due to the recent warming of the climate.  相似文献   

14.
The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation. As treeline heterogeneity increases from global to regional and smaller scales, assessment of treeline sensitivity at the landscape and local scales requires a more complex approach than at the global scale. The time scale (short‐, medium‐, long‐term) also plays an important role when considering treeline sensitivity. The sensitivity of the treeline to a changing environment varies among different types of treeline. Treelines controlled mainly by orographic influences are not very susceptible to the effects of warming climates. Greatest sensitivity can be expected in anthropogenic treelines after the cessation of human activity. However, tree invasion into former forested areas above the anthropogenic forest limit is controlled by site conditions, and in particular, by microclimates and soils. Apart from changes in tree physiognomy, the spontaneous advance of young growth of forest‐forming tree species into present treeless areas within the treeline ecotone and beyond the tree limit is considered to be the best indicator of treeline sensitivity to environmental change. The sensitivity of climatic treelines to climate warming varies both in the local and regional topographical conditions. Furthermore, treeline history and its after‐effects also play an important role. The sensitivity of treelines to changes in given factors (e.g. winter snow pack, soil moisture, temperature, evaporation, etc.) may vary among areas with differing climatic characteristics. In general, forest will not advance in a closed front but will follow sites that became more favourable to tree establishment under the changed climatic conditions.  相似文献   

15.
Aim To project the distribution of three major forest types in the northeastern USA in response to expected climate change. Location The New England region of the United States. Methods We modelled the potential distribution of boreal conifer, northern deciduous hardwood and mixed oak–hickory forests using the process‐based BIOME4 vegetation model parameterized for regional forests under historic and projected future climate conditions. Projections of future climate were derived from three general circulation models forced by three global warming scenarios that span the range of likely anthropogenic greenhouse gas emissions. Results Annual temperature in New England is projected to increase by 2.2–3.3 °C by 2041–70 and by 3.0–5.2 °C by 2071–99 with corresponding increases in precipitation of 4.7–9.5% and 6.4–11.4%, respectively. We project that regional warming will result in the loss of 71–100% of boreal conifer forest in New England by the late 21st century. The range of mixed oak–hickory forests will shift northward by 1.0–2.1 latitudinal degrees (c. 100–200 km) and will increase in area by 149–431% by the end of the 21st century. Northern deciduous hardwoods are expected to decrease in area by 26% and move upslope by 76 m on average. The upslope movement of the northern deciduous hardwoods and the increase in oak–hickory forests coincide with an approximate 556 m upslope retreat of the boreal conifer forest by 2071–99. In our simulations, rising atmospheric CO2 concentrations reduce the losses of boreal conifer forest in New England from expected losses based on climatic change alone. Main conclusion Projected climate warming in the 21st century is likely to cause the extensive loss of boreal conifer forests, reduce the extent of northern hardwood deciduous forests, and result in large increases of mixed oak–hickory forest in New England.  相似文献   

16.
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide‐ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short‐ and long‐term tree growth responses, focusing on among‐tree variability and potential feedback effects. Although among‐tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth–climate relationships. We compiled tree‐ring data including almost 600 trees of major treeline species (Larix decidua, Picea abies, Pinus cembra, and Pinus mugo) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among‐tree variability, we employed information‐theoretic model selections based on linear mixed‐effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long‐term trends in ring‐width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among‐tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall (L. decidua) and current year's spring (L. decidua, P. abies). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies, P. cembra, and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long‐suspected negative and positive feedback of climate change on stand dynamics at treeline.  相似文献   

17.
Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand‐total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming‐induced treeline dynamics.  相似文献   

18.
Aim The predictions from biogeographical models of poleward expansion of biomes under a warmer 2 × CO2 scenario might not be warranted, given the non‐climatic influences on vegetation dynamics. Milder climatic conditions have occurred in northern Québec, Canada, in the 20th century. The purpose of this study was to document the early signs of a northward expansion of the boreal forest into the subarctic forest‐tundra, a vast heterogeneous ecotone. Colonization of upland tundra sites by black spruce (Picea mariana (Mill.) BSP.) forming local subarctic tree lines was quantified at the biome scale. Because it was previously shown that the regenerative potential of spruce is reduced with increasing latitude, we predicted that tree line advances and recent establishment of seedlings above tree lines will also decrease northwards. Location Black spruce regeneration patterns were surveyed across a > 300‐km latitudinal transect spanning the forest‐tundra of northern Québec, Canada (55°29′–58°27′ N). Methods Elevational transects were positioned at forest–tundra interfaces in two regions from the southern forest‐tundra and two regions from the northern forest‐tundra, including the arctic tree line. The surroundings of stunted black spruce, forming the species limit in the shrub tundra, were also examined. Position, total height and origin (seed or layer) of all black spruce stems established in the elevational transects were determined. Dendrochronological and topographical data allowed recent subarctic tree line advances to be estimated. Age structures of spruce recently established from seed (< 2.5 m high) were constructed and compared between forest‐tundra regions. Five to 20‐year heat sum (growing degree‐days, > 5 °C) and precipitation fluctuations were computed from regional climatic data, and compared with seedling recruitment patterns. Results During the 20th century, all tree lines from the southern forest‐tundra rose slightly through establishment of seed‐origin spruce, while some tree lines in the northern forest‐tundra rose through height growth of stunted spruce already established on the tundra hilltops. However, the rate of rise in tree lines did not slow down with latitude. The density of < 2.5‐m spruce established by seed declined exponentially with latitude. While the majority of < 2.5‐m spruce has established since the late 1970s on the southernmost tundra hilltops, the regeneration pool was mainly composed of old, suppressed individuals in the northern forest‐tundra. Spruce age generally decreased with increasing elevation in the southern forest‐tundra stands, therefore indicating current colonization of tundra hilltops. Although spruce reproductive success has improved over the twentieth century in the southern forest‐tundra, there was hardly any evidence that recruitment of seed‐origin spruce was controlled by 5‐ to 20‐year regional climatic fluctuations, except for winter precipitation. Main conclusions Besides the milder 20th century climate, local topographic factors appear to have influenced the rise in tree lines and recent establishment by seed. The effect of black spruce's semi‐serotinous cones in trapping seeds and the difficulty of establishment on exposed, drought‐prone tundra vegetation are some factors likely to explain the scarcity of significant correlations between tree establishment and climatic variables in the short term. The age data suggest impending reforestation of the southernmost tundra sites, although the development of spruce seedlings into forest might be slowed down by the harsh wind‐exposure conditions.  相似文献   

19.
From 2001 to 2004 we experimentally warmed 40 large, naturally established, white spruce [Picea glauca (Moench) Voss] seedlings at alpine treeline in southwest Yukon, Canada, using passive open‐top chambers (OTCs) distributed equally between opposing north and south‐facing slopes. Our goal was to test the hypothesis that an increase in temperature consistent with global climate warming would elicit a positive growth response. OTCs increased growing season air temperatures by 1.8°C and annual growing degree‐days by one‐third. In response, warmed seedlings grew significantly taller and had higher photosynthetic rates compared with control seedlings. On the south aspect, soil temperatures averaged 1.0°C warmer and the snow‐free period was nearly 1 month longer. These seedlings grew longer branches and wider annual rings than seedlings on the north aspect, but had reduced Photosystem‐II efficiency and experienced higher winter needle mortality. The presence of OTCs tended to reduce winter dieback over the course of the experiment. These results indicate that climate warming will enhance vertical growth rates of young conifers, with implications for future changes to the structure and elevation of treeline contingent upon exposure‐related differences. Our results suggest that the growth of seedlings on north‐facing slopes is limited by low soil temperature in the presence of permafrost, while growth on south‐facing slopes appears limited by winter desiccation and cold‐induced photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号