首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
台湾和日本处在不同的地理纬度上,同属岛屿海洋性气候,前者地域面积远小于后者,拟步甲的物种多样性却大于后者。为弄清楚这些科学问题,作者采用G-F指数对从台湾到日本不同纬度梯度上的拟步甲多样性分布格局进行了比较分析,得到如下初步结论:(1) G-F指数从大到小依次是:台湾(21°N-25°N)(0.826)>日本(24°N-45°N)(0.824)>日本Ⅱ纬度区(30°N-35°N)(0.792)>日本Ⅰ纬度区(24°N-30°N)(0.765)>日本Ⅲ纬度区(35°N-40°N)(0.761)>日本Ⅳ纬度区(40°N-45°N)(0.603);(2)台湾拟步甲属的多样性(DG)、族的多样性(DF)和G-F指数(DG-F)均最高,分别是4.263、24.464和0.826;(3)各纬度上拟步甲的物种分布情况:台湾(21°N-25°N)(541种)>日本(24°N-45°N)(489种)>日本Ⅰ纬度区(24°N-30°N)(257种)>日本Ⅱ纬度区(30° N-35° N)(231种)>日本Ⅲ纬度区(35° N-40° N)(172种)>日本Ⅳ纬度区(40° N-45° N)(60种)。研究数据显示, G-F指数能较好地反映台湾和日本各地拟步甲族、属的多样性。其物种多样性在纬度上的分布表现为从南向北递减的趋势,并对其基本原因进行分析。作者首次基于台湾和日本两个岛屿拟步甲物种多样性的比较分析,对现有岛屿生物多样性的有关理论提出个人看法,认为岛屿生物地理学的“物种-面积关系理论”中的“岛屿面积越大,物种数量就越多”可能存在一定的局限性,不一定能客观地反映种类众多的现生岛屿昆虫物种多样性的实际情况。  相似文献   

2.
为探索我国西南山地居民区蚊类多样性空间分布规律与区系分异,作者于2005年7-9月应用紫外灯诱捕法对滇西北"三江并流"自然遗产地中的澜沧江流域6个纬度梯度带(24°-30°N)和5个海拔梯度带(1,000-3,500 m)山地居民区的蚊类进行了调查取样.共捕获蚊类76,458只,分属于2亚科5属36种.统计分析结果显示:(1)物种丰富度随纬度的升高呈下降趋势,随海拔的升高呈先增高后降低的单峰型分布格局;(2)α多样性随纬度的升高呈先降低而后略有升高的分布格局,最高峰位于Ⅰ带(24°-25°N),而随海拔的升高呈波浪状变化,峰值分别出现在C(2,000-2,500 m)和E(3,000-3,500 m)带;(3)β多样性(Cody指数)随纬度和海拔的升高先减少后增加,基本形成两端高中间低的格局.两端高峰的具体地理位置分别处于南亚热带向中亚热带气候和暖温带向寒温带气候的过渡地带.说明蚊类β多样性空间分布格局、区系及物种的组成与地理环境和气候条件的变化有关;(4)从种群组成相似性聚类分析的结果来看,不同纬度、海拔梯度带问蚊类都被分为3个地域区系类型,即东洋区系、东洋与古北区系的过渡区和古北区系;(5)典范对应分析(CCA)的排序结果显示:气温和降水均影响当地蚊类多样性的空间分布格局,降水起主导作用.  相似文献   

3.
【目的】步甲是主要栖息于地表的种类最丰富的昆虫类群之一,它们对生境的变化更为敏感。分析地形因子对贺兰山步甲昆虫群落物种多样性分布格局的影响,以期揭示步甲昆虫物种多样性分布格局形成和稳定的机制。【方法】2015年7-8月选取贺兰山山地针叶林、山地疏林、山地灌丛、山地草原和浅山荒漠5种生境98个样地,用杯诱法对步甲群落物种组成和多样性进行调查,并采用典范对应分析(CCA)分析物种多样性指数和物种分布与地形因子之间的关系,运用广义可加模型(GAM)拟合不同生境步甲群落多样性指数对海拔梯度的响应曲线,探讨贺兰山步甲群落物种多样性的垂直分布格局。【结果】共采集步甲昆虫21属65种10 989头,其中,直角通缘步甲Pterostichus gebleri和径婪步甲Harpalus salinus为优势种,其个体数量分别占总捕获个体数的44.93%和11.33%。山地疏林生境步甲物种丰富度最高,山地针叶林的步甲Shannon-Wiener多样性指数最高,浅山荒漠的步甲均匀度最高。海拔、坡向、坡度、剖面曲率和地形湿度指数的综合作用对步甲物种多样性分布格局有显著影响。其中,海拔对5种生境的步甲分布影响均显著,且解释力度最高;坡向对山地针叶林和浅山荒漠步甲分布影响显著。步甲总体丰富度和个体数量与海拔呈不对称的单峰曲线关系,Shannon-Wiener多样性指数随海拔呈先递增后保持稳定的变化,均匀度指数与海拔呈"V"型变化趋势。【结论】贺兰山山地步甲物种多样性的分布格局受海拔为主的多种地形因子综合作用的影响。  相似文献   

4.
1996与1997年在河北省曲周县盐渍化改造区,采用陷阱法调查了农田中步甲的物种组成与数量分布。共记录到步甲19个种,分隶于8个属。其中婪步甲属(Harpalus)在数量上占绝对优势。总体来说,本地步甲区系组成相对简单,属与物种数较少。单齿婪步甲(Harpalus simplicidens)、毛婪步甲(H.griseus)和三齿婪步甲(H.tridens)为优势物种。从时间动态上看,步甲数量呈总体上升趋势,9月份最多,10月份下降到最低。步甲数量的季节变动在不同种植模式间不同,并在一定程度上受农田景观及农事活动的影响。农田边界是生物的避难所和聚集地,对步甲有重要的保护作用,农田边界上的步甲密度普遍比相邻农田中高,月份间步甲数量的波动幅度也较小。  相似文献   

5.
对濒危物种在大尺度上地理分布的研究,有助于制定合理的保护规划和保护策略.兰科植物作为一大类急需保护的濒危物种,研究其在中国境内的地理分布格局具有重要的理论和实践意义.通过文献查阅、自然保护区数据整理收集兰科植物在全国范围内的调查数据,利用ArcGIS10.0和SPASS18.0软件对其地理分布进行了分析,结果表明:中国西南地区是兰科植物的分布中心和分化中心;兰科植物丰富度表现出显著的经度和纬度相关性,与经度之间呈单峰关系,在100°E附近出现峰值,但随纬度升高丰富度不断下降.  相似文献   

6.
宁夏贺兰山拟步甲科昆虫分布与地形的关系   总被引:1,自引:0,他引:1  
利用典范对应分析(CCA)及曲线回归拟合,研究了宁夏贺兰山拟步甲科昆虫多样性及分布与地形的关系。结果表明:共调查到14属42种,其中,小圆鳖甲和阿小鳖甲为优势种,其个体数量分别占总捕获个体数的36.09%和19.14%。CCA分析显示,海拔、坡度和平面曲率对拟步甲昆虫的分布格局有显著影响。拟步甲昆虫丰富度和多样性分别与海拔呈显著的线性关系,个体数量与平面曲率呈显著的二次曲线关系。拟步甲昆虫的分布与坡度和坡向没有明显的回归关系,但拟步甲倾向于0°-15°坡度和西北坡向聚集。优势种小圆鳖甲与5个地形因子均不显著相关,因此在贺兰山的分布比较广泛。而优势种阿小鳖甲分布受海拔、坡度和平面曲率影响显著。  相似文献   

7.
以山西省境内分布的典型亚高山草甸为对象,采用收获法获取植被生物量数据,结合经度、纬度和海拔3个地理因子,分析总生物量(TB)、地上生物量(AGB)、地下生物量(BGB)及根冠比(R/S)沿不同地理梯度的变化规律,从群落水平上探究山西亚高山草甸植被生物量的地理空间分布特征。结果表明:(1)TB、AGB、BGB在地域上表现较大变异。AGB变异最大,在32.50~756.00 g·m-2;BGB次之,变化范围为140.50~1586.50 g·m-2;TB波动最小,在248.25~2342.50 g·m-2。(2)TB随海拔升高显著减小(P0.05),随经度增加缓慢增大(P0.05),随纬度增加略微减小(P0.05),在1700~1800 m、113.4°E—113.85°E、35°N—35.5°N处最大(平均为896 g·m-2)。(3)AGB随纬度增加、海拔升高显著减小(P0.001),随经度增加逐渐增大(P0.05),在1700~1800 m、112.05°E—112.5°E、35°N—35.5°N处最大(平均为366.06 g·m-2)。(4)BGB随纬度增加呈"降低-升高-降低"的变化趋势,整体略有增大(P0.05),随经度增加也略有增大(P0.05),而随海拔升高显著增大(P0.05),在3000~3100 m、113.4°E—113.85°E、35°N—35.5°N处最大(平均为745.63 g·m-2)。(5)R/S随纬度增加、海拔升高显著增大(P0.05),随经度增加略有增大(P0.05);与纬度、海拔呈显著的幂指数函数关系(P0.05),且表现为等速增长(幂指数平均为1.025)。RDA分析结果表明,在一定范围内,对亚高山草甸植被不同生物量特征影响较大的为纬度和海拔因子,最小影响因子是经度,地上生物量与经纬度和海拔均呈显著的负相关,生物量更多地分配到地下部分。  相似文献   

8.
阿拉善左旗植物物种多样性空间分布特征   总被引:9,自引:3,他引:6  
通过对内蒙古自治区阿拉善左旗的植被样方调查,研究干旱荒漠地区植物群落物种多样性的梯度变化和空间分布特征。通过对样方数据的群落生活型构成、物种丰富度、α多样性、β多样性分析,结合CCA排序和地统计方法,结果表明:(1)在该区域植物物种的α多样性和β多样性均起伏较大。(2)草本植物的丰富度由西向东呈增高趋势,而灌木的丰富度则呈降低趋势;随纬度的增加,草本植物丰富度呈现下降趋势,而灌木丰富度则显现出上升趋势。但是,38°~39.2°N之间出现了一个灌木和草本物种丰富度都相对比较低的异常区域。(3)α多样性与经度正相关,但与纬度存在负相关关系。β多样性显示,随着经度的增加,自西向东样方问物种构成的相似性降低,物种替代速率升高。随着纬度的增加,群落组成呈现逐渐单一化的趋势。(4)Shannon—Wiener指数和Shimpson指数的CO/(CO+Cl)都在0.25—0.75之间,α多样性为中等空间相关性。CCA分析的结果表明,地理因素对于物种多样性有显著的影响,而且经度的影响大于海拔的影响。研究阿拉善左旗荒漠区植物物种多样性的梯度变化和空间分布特征,为认识和保护荒漠地区生物多样性资源提供了理论依据和实践基础。  相似文献   

9.
与物种多样性有关的长白落叶松人工林生物量   总被引:1,自引:0,他引:1  
孙玉军  马炜  刘艳红 《生态学报》2015,35(10):3329-3338
对不同龄组长白落叶松(Larix olgensis)人工林群落的物种多样性和生物量及二者关系研究分析。结果表明:1)随林龄增大,群落物种组成结构和多样性特征发生了很大变化。物种更迭现象明显,春榆等阔叶树重要值上升,长白落叶松优势地位逐渐下降,植被类型向针阔混交林演替。群落Sorensen相似性指数降低,Shannon-Winner多样性指数呈"S"型曲线增长,Pielou均匀度指数呈反"S"型曲线下降,Margalef丰富度指数呈单峰曲线增长趋势;2)随林龄增大,群落生物量"S"型曲线增长趋势明显,分配序列为:乔木层木质物残体层灌木层草本层,占群落生物量比例分别为82.41%、15.10%、1.69%和0.81%。长白落叶松生物量占据主导地位,但所占比例持续下降,属于衰退型种群,而春榆等阔叶树比例上升。林下植被层中,草本的主导地位逐渐丧失,灌木取而代之,生物量所占比例明显升高。地表木质物残体生物量比例缓慢下降;3)群落中物种多样性测度指标与生物量之间单调线性增长的关系明显,Shannon多样性指数较之Pielou均匀度指数更适合作群落生物量度量指标,生物量与Margalef丰富度指数无明显相关性。  相似文献   

10.
利用地理信息系统技术与空间统计相结合的方法,研究了杨属物种多样性在中国区域尺度上的空间分布格局,并且采用线性回归分析方法研究了杨属物种多样性与经纬度的关系。结果表明:(1)杨属物种在中国呈带状分布,东西分布幅度大于南北分布幅度;(2)纬度梯度上杨属物种集中分布区位于30—40°N,经度梯度上位于110—120°E,说明杨属物种多样性格局在经、纬度梯度上并非单调递增或递减,而是在某一最适区域具有最高的物种多样性;(3)中国杨属物种多样性的分布中心集中于东北—西南方向的黑河-腾冲线两侧,从黑腾线向西北和东南方向延伸过程中,物种多样性逐渐降低;沿黑腾线从东北向西南方向物种多样性呈增加趋势;(4)从分组、分种检索上看,白杨组和青杨组物种在中国分布范围最广,山杨、小叶杨、响叶杨和青杨4种物种分布范围最广,可见同一类群中不同分类等级的植物多样性地理分布格局存在差异。  相似文献   

11.
We describe the elevational patterns of species richness and endemism of some important taxa in the Hengduan Mountains, southwest China. Species richness data came from publications, an online database, herbaria and field work. Species richness was estimated by rarefaction and interpolation. The Hengduan Mountains region was divided into a southern and northern subregion, and all species were assigned to four groups based on their distributional range within this region. The conditional autoregressive model (CAR) was used to relate species richness and explanatory variables. The elevational patterns of total, endemic and non-endemic species richness, at subregion and entire region scales, presented to be unimodal and peaked at similar elevations. Area size was strongly related with species richness, and was more powerful in explaining variation in species richness in the northern subregion than in the southern subregion. A single climatic variable (mean annual rainfall, potential evapotranspiration or moisture index) showed a weak relationship with the elevational pattern of species richness. Area and climatic variables together explained more than 67% of the variation in non-endemic richness, 53% in total richness, and 50% in endemic richness. There were three patterns of endemism at the generic level with increasing elevation: namely endemism increased, decreased, or peaked at middle elevations. All selected taxa have experienced rapid speciation and evolution within this region, which plays an important role in the uniform elevational patterns of total, endemic and non-endemic richness, and in the multiform elevational patterns of endemism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
We investigated elevational richness patterns of three moth groups (Erebidae, Geometridae, and Noctuidae) along four elevational gradients located on one northern and three southern mountains in South Korea, as well as the effects of plants and climatic factors on the diversity patterns of moths. Moths were collected with an ultraviolet light trap at 32 sites from May through October, 2013. Plant species richness and mean temperatures for January and June were acquired. Observed and estimated moth species richness was calculated and the diversity patterns with null models were compared. Species richness along four elevational gradients peaked at mid-elevations, whereas deviations occurred at elevations below mid-peak in the southern mountains and elevations higher than mid-peak on the northern mountain. Species richness curves of three moth groups also peaked at mid-elevations throughout South Korea. However, the species richness curves for Erebidae were positively skewed, indicating that a preference for lowlands, whereas curves of the Geometridae were negatively skewed, indicating a preference for highlands. The mid-peak diversity pattern between plants and moths on the Korean mountains showed an elevational breadth that overlapped between 800 and 900 m. Multiple regression analysis revealed that plant species richness and January mean temperature significantly influenced moth species richness and abundance. The rapid increase in mean annual temperature in the Korean peninsula and the unimodal elevational gradients of moths across the country suggest that an uphill shift in peak optimum elevation and changes in the highest peak of the curve will occur in the future.  相似文献   

13.
Aim The goals of this study were to: (1) compare water conductivity and pH as proxy measures of mineral richness in relation to mollusc assemblages in fens, (2) examine the patterns of mollusc species richness along the gradient of mineral richness based on these factors, (3) model species–response curves and analyse calcicole–calcifuge behaviour of molluscs, and (4) compare the results with those from other studies concerning non‐marine mollusc ecology. Location Altogether, 135 treeless spring fen sites were sampled within the area of the Western Carpathians (east Czech Republic, north‐west Slovakia and south Poland; overall extent of study area was 12,000 km2). Methods Mollusc communities were recorded quantitatively from a homogeneous area of 16 m2. Water conductivity and pH were measured in the field. The patterns of local species diversity along selected gradients, and species–response curves, were modelled using generalized linear models (GLM) and generalized additive models (GAM), both using the Poisson distribution. Results When the most acid sites (practically free of molluscs) were excluded, conductivity expressed the sites’ mineral richness and base saturation within the entire gradient, in contrast to pH. In the base‐rich sites, pH did not correlate with mineral richness. A unimodal response of local species diversity to mineral richness (expressed as conductivity) was found. In the extremely mineral‐rich, tufa‐forming sites (conductivity > 600 μS cm?1) a decrease in species diversity was encountered. Response curves of the most common species showed clear differentiation of their niches. Significant models of either unimodal or monotonic form were fitted for 18 of the 30 species analysed. Species showed five types of calcicole–calcifuge behaviour: (1) a decreasing monotonic response curve and a preference for the really acid sites; (2) a skewed unimodal response curve with the optimum shifted towards the slightly acid sites; (3) a symmetrical unimodal model response curve with the optimum in the base‐rich sites, with no or slight tufa precipitation; (4) a skewed unimodal response curve but with the optimum shifted to the more mineral‐rich sites; and (5) an increasingly monotonic response curve, the optimum in the extremely base‐rich sites with strong tufa precipitation. Main conclusions Conductivity is the only reliable proxy measure of mineral richness across the entire gradient, within the confines of this study. This information is of great ecological significance in studies of fen mollusc communities. Species richness does not increase with increasing mineral richness along the entire gradient: only a few species are able to dwell in the extremely base‐rich sites. The five types of calcicole–calcifuge behaviour seen in species living in fens have a wider application: data published so far suggest they are also applicable to mollusc communities in other habitats.  相似文献   

14.
Geographic distribution of wild potato species   总被引:6,自引:0,他引:6  
The geographic distribution of wild potatoes (Solanaceae sect. Petota) was analyzed using a database of 6073 georeferenced observations. Wild potatoes occur in 16 countries, but 88% of the observations are from Argentina, Bolivia, Mexico, and Peru. Most species are rare and narrowly endemic: for 77 species the largest distance between two observations of the same species is <100 km. Peru has the highest number of species (93), followed by Bolivia (39). A grid of 50 × 50 km cells and a circular neighborhood with a radius of 50 km to assign points to grid cells was used to map species richness. High species richness occurs in northern Argentina, central Bolivia, central Ecuador, central Mexico, and south and north-central Peru. The highest number of species in a grid cell (22) occurs in southern Peru. To include all species at least once, 59 grid cells need to be selected (out of 1317 cells with observations). Wild potatoes occur between 38° N and 41° S, with more species in the southern hemisphere. Species richness is highest between 8° and 20° S and around 20° N. Wild potatoes typically occur between 2000 and 4000 m altitude.  相似文献   

15.
Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity. However, previous studies have mostly examined functional diversity at the community scale. Here, we examined large-scale patterns of trait occurrence and functional diversity in Delphinium along an elevational gradient from 1000 to 5700 m in the Hengduan Mountains, SW China. Elevational distribution and trait data of 102 Delphinium species were compiled to evaluate the patterns of interspecific traits, species richness, and functional diversity. We found that the distribution of species richness showed a unimodal curve that peaked between 3500 and 4000 m; functional diversity and traits showed different patterns along an elevational gradient. The functional diversity increased at a lower rate along an elevation gradient, whereas species richness continued to increase. Species with large ranges and non-endemic species were most affected by geometric constraints. Richness of species endemic to the Hengduan Mountains peaked at higher elevations, likely due to increased speciation and restricted dispersion under alpine conditions. We conclude that the middle elevation region is not only the functionally richest but also the most functionally stable region for Delphinium, which could be insurance against environmental change. Extreme conditions and strong environmental filters in an alpine environment may cause the convergence of species traits, which could relate to reducing nutrient trait investment and increasing reproductive trait investment. We conclude that large-scale studies are consistent with previous studies at the community scale. This may indicate that the relationship between functional diversity and species richness across different scales is the same.  相似文献   

16.
Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico   总被引:2,自引:0,他引:2  
1  This study documents patterns of rodent and bat diversity related to abiotic and biotic factors along elevational gradients in the Sierra Mazateca (640–2600 m a.s.l.) and Sierra Mixteca (700–3000 m a.s.l.) in Oaxaca, Mexico.
2  The two transects share similar faunas: 17 and 23 rodent species were captured in the sierras Mazateca and Mixteca, respectively, 14 of which occurred on both transects. Rodent species richness was similar in the wet season and the dry season along both transects. Rodent species richness peaked at 1025–1050 m in tropical semi-deciduous forest on both transects. Endemic species were restricted to high-elevation habitats.
3  Sixteen and 17 bat species were captured in the sierras Mazateca and Mixteca, respectively; 11 occurred on both transects. Bat species richness was higher in the wet season than in the dry season in the Sierra Mazateca. Bat species richness peaked at 1850 m in pine–oak forest in the Sierra Mazateca, and at 750 m and 1050 m in tropical semi-deciduous forest in the Sierra Mixteca, decreasing abruptly at higher elevations on both transects.
4  Patterns of trophic diversity of rodents and bats coincided with those of species richness on each transect. Species richness increased with increasing habitat diversity; increased with increasing rainfall and productivity; increased with increasing resource diversity; and increased in areas with high rates of speciation (rodents only).
5  The need for conservation action in Oaxaca is urgent and proponents should promote establishment of protected areas linking lowland habitats with high species richness to high-elevation habitats harbouring large numbers of endemic forms.  相似文献   

17.
Aims Theories based on resource additions indicate that plant species richness is mainly determined by the number of limiting resources. However, the individual effects of various limiting resources on species richness and aboveground net primary productivity (ANPP) are less well understood. Here, we analyzed potential linkages between additions of limiting resources, species loss and ANPP increase and further explored the underlying mechanisms.Methods Resources (N, P, K and water) were added in a completely randomized block design to alpine meadow plots in the Qinghai-Tibetan Plateau. Plant aboveground biomass, species composition, mean plant height and light availability were measured in each plot. Regression and analysis of variance were used to analyze the responses of these measures to the different resource-addition treatments.Important findings Species richness decreased with increasing number of added limiting resources, suggesting that plant diversity was apparently determined by the number of limiting resources. Nitrogen was the most important limiting resource affecting species richness, whereas P and K alone had negligible effects. The largest reduction in species richness occurred when all three elements were added in combination. Water played a different role compared with the other limiting resources. Species richness increased when water was added to the treatments with N and P or with N, P and K. The decreases in species richness after resource additions were paralleled by increases in ANPP and decreases in light penetration into the plant canopy, suggesting that increased light competition was responsible for the negative effects of resource additions on plant species richness.  相似文献   

18.
The objective of this study was to identify the major environmental variables and components of forest structure associated with variability in tree species richness on a network of 806 permanent plots in the State of Jalisco, Mexico. Tree data recorded on the sample plots were used to characterize tree species richness by forest type and climatic conditions (temperature and precipitation) in the State. Species composition and other diversity indices were also calculated. Explanatory variables identified in a Poisson regression identified forest cover type, elevation, tree basal area, canopy closure, and winter precipitation as being important to changes in tree species richness. An “extreme quantile curve estimation” approach was then used to approximate the boundary that represented the maximum potential species richness response to the various levels of important variables. Maximum tree species richness decreased with increasing elevation. The relationships between maximum species richness and tree basal area, canopy closure, and winter precipitation followed a hump-back unimodal model, with intermediate values supporting the largest species richness. We believe that results of the current study will contribute to further development of a conservation plan for tree species in the State of Jalisco, Mexico.  相似文献   

19.
植物物种多样性在海拔梯度上的变化规律以及物种多样性与生产力的关系是生态学研究的热点, 至今还没有得出一般性规律。本文以青海省海南藏族自治州贵德县的拉脊山(36°21′ N, 101°27′ E, 海拔3,389-3,876 m)和果洛藏族自治州的玛沁县军牧场山体(34°22′ N, 100°30′ E, 海拔4,121-4,268 m)为研究对象, 对植物高度、盖度、地上生物量和物种多样性随海拔高度的变化进行调查和统计分析, 以探讨青藏高原高寒草甸的物种多样性和地上生物量在海拔梯度上的变化规律及两者的关系。结果表明: (1)两条山体样带上地上生物量与物种多样性随海拔的变化规律一致: 随着海拔的升高, 地上生物量线性降低; Shannon-Wiener指数、Simpson指数和物种丰富度都呈单峰曲线, 在中间海拔最大, 而Pielou指数随海拔的升高线性增加。结合目前针对青藏高原高寒草甸的研究数据, 发现物种丰富度随海拔高度的变化均呈单峰曲线, 说明随着海拔的升高物种多样性先升高后降低可能是青藏高原物种多样性分布的普遍规律。(2)地上生物量与物种多样性的关系在两条山体样带上表现一致: 地上生物量随Shannon- Wiener指数、Simpson指数和Pielou指数的升高而线性降低, 但与物种丰富度不相关。综合两条山体样带所有样方数据, 发现地上生物量与Shannon-Wiener指数、Simpson指数不相关, 而随物种丰富度的升高线性增加。结合目前在青藏高原的相关研究数据, 发现地上生物量与物种丰富度呈S型曲线(logistic model)。  相似文献   

20.
以青藏高原亚高寒草甸为研究对象,采用随机区组设计,通过连续4a添加N、P,研究了不同施肥(N、P、N+P)处理下群落物种丰富度、种多度分布模式以及群落相似性的变化特征。结果显示:(1)N、N+P连续添加4年后,随N素添加水平的增加,草地植物群落物种丰富度逐渐降低(P0.001);种多度分布曲线的斜率逐渐增大;N+P添加处理对植物群落物种丰富度和种多度分布(SAD)曲线的影响较单独N添加处理更显著,如N15P15处理下群落物种丰富度的降幅最大,达对照群落的65.5%;(2)单一N或N+P处理中,不同添加量间的植被组成趋异,而相同添加量的植被组成趋同(stress level=0.152);(3)N、N+P添加引起刷状根的丛生型禾本科植物逐渐在植物群落中占据优势;(4)P素添加对群落物种丰富度、种多度分布曲线、群落相似性和不同生长型组成及比例的影响不显著;(5)植物生长型特征和N/P添加处理可解释56.97%植物群落的物种多度分布特征。这些结果表明:亚高寒草甸地区N添加引起植物群落组成的重新排序、优势种的变化、SAD曲线逐渐陡峭,群落的相似性增加;N富集时,添加P素会增加N素的利用效率,且群落结构受N、P供应水平的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号