首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats dehydrated for 8 days and subsequently rehydrated were given intracerebroventricularly (i.c.v.) methoxamine hydrochloride (MX) or dihydroergotamine methanosulphonate (DHE), each in a daily dose of 10 micrograms dissolved in 10 microliter of 0.9% sodium chloride. A single dose of MX injected to normally hydrated animals increased the release of hypothalamic and neurohypophysial vasopressin but did not affect significantly the oxytocic activity in the hypothalamus as well as in the neurohypophysis. Under conditions of dehydration MX did not influence the hypothalamic vasopressin content but it stimulated the neurohypophysial vasopressin depletion. On the contrary, MX distinctly inhibited the decrease of hypothalamic and neurohypophysial oxytocin content in dehydrated animals. In rehydrated animals MX restrained some what the renewal of hypothalamic vasopressin and oxytocin storage but intensified this process in the neurohypophysis. A single dose of DHE decreased the vasopressin content in the hypothalamus as well as the oxytocin content both in the hypothalamus and neurohypophysis. Under conditions of dehydration DHE stimulated the depletion of hypothalamic vasopressin and oxytocin. On the contrary, DHE strongly inhibited the depletion of oxytocin in the neurohypophysis of dehydrated rats. DHE restrained the renewal of hypothalamic vasopressin and oxytocin stores as well as intensified this process in the neurohypophysis of subsequently rehydrated rats.  相似文献   

2.
Under conditions of equilibrated water metabolism a single dose of methoxamine increased the content of vasopressin in the hypothalamus as well as that of oxytocin both in the hypothalamus and neurohypophysis. During dehydration the depletion of hypothalamic and neurohypophysial vasopressin was more marked in methoxamine-treated animals; this effect, however, was absent in the neurohypophysis on the 2nd day and in the hypothalamus on the 8th day of water deprivation. After two days of dehydration methoxamine inhibited the decrease of oxytocin content in the hypothalamus; simultaneously (2nd and 4th day of dehydration) it intensified this process in the neurohypophysis. During rehydration methoxamine impaired the renewal of vasopressin both in the hypothalamus and neurohypophysis; this effect was most marked on the 8th day of rehydration. On the contrary, it favoured somewhat the renewal of hypothalamic oxytocin in rehydrated rats (such an event was not found on the 8th day of rehydration). Moreover, methoxamine restrained initially (on the 2nd and 4th day of rehydration) the restoration of neurohypophysial oxytocin stores; following eight days of rehydration an opposite effect was here found. It is concluded that the response of the vasopressinergic and oxytocinergic neurons to alpha-adrenergic stimulation, brought about by using methoxamine as pharmacological tool, seems to be depended on the actual state of water metabolism. Impulses from the osmoreceptors may be therefore of some importance in modifying the change in vasopressin and oxytocin synthesis, transport and release resulting from stimulation of alpha-adrenergic transmission through neural chains including units susceptible to methoxamine.  相似文献   

3.
The effect of centrally administered galanin (Gal; 100 pM i.c.v.) on the hypothalamo-neurohypophysial storage as well as blood plasma level of vasopressin and oxytocin was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. Gal i.c.v. treatment did not alter vasopressin and oxytocin content both in the hypothalamus and neurohypophysis as well as their concentration in blood plasma of not haemorrhaged rats. Haemorrhage decreased the hypothalamic and neurohypophysial vasopressin and oxytocin storage but increased the neurohormones plasma level in animals injected with vehicle solution. During the haemorrhage, the increase in plasma vasopressin and oxytocin was inhibited in rats previously treated i.c.v. with galanin. The hypothalamic and neurohypophysial vasopressin as well as oxytocin content significantly increased in animals treated with galanin and subsequently haemorrhaged. These results suggest that galanin may have a regulatory role in the hypothalamo-neurohypophysial function especially under condition of hypovolemia.  相似文献   

4.
In dehydrated rats both neurohypophysial hormones diminished in hypothalamus as well as in the neurohypophysis. Oxytocin disappearef from the hypothalamus and neurohypophysis at a more rapid rate than vasopressin did. The minimal content of vasopressin and oxytocin in the hypothalamus was observed during 3rd--4th day, but even in extreme dehydration it was found to be relatively high: 65 per cent of vasopressin and 27 per cent of oxytocin as compared with intact animals. At that time the neurohypophysial vasopressin and oxytocin content were almost fully exhausted. In dehydrated and additionally reserpinized animals (10 mg/kg intraperitoneally, then each 48 hr 5 mg/kg of initial body weight) the vasopressin and and oxytocin hypothalamus and neurohypophysis changed in a similar manner. In some experimental groups the decrease of neurohormones in both sites was more marked under reserpine treatment. The drug seems therefore rather to potentiate the effects of physiological stimulation of osmodetectors. So the existence of monoaminergic stimulatory synapses, directly involved in the neural pathway between the osmodetector and the neurosecretory cell, appears to be hardly probable.  相似文献   

5.
Galanin (Gal) as a neuropeptide with widespread distribution in the central nervous system may be involved in the mechanisms of vasopressin (AVP) and oxytocin (OT) release from the hypothalamo-neurohypophysial system. Vasopressin and oxytocin content in the hypothalamus and neurohypophysis as well as plasma level of both neurohormones were studied after galanin treatment in euhydrated and dehydrated rats. In not dehydrated rats intracerebroventricular (i.c.v.) injections of Gal did not affect the hypothalamic and neurohypophysial OT content, however, distinctly increased plasma OT concentration. In the same animals Gal diminished the hypothalamic AVP content but was without the effect on neurohypophysial AVP storage; plasma AVP level then raised. Galanin, administered i.c.v. to rats deprived of water, distinctly inhibited AVP and OT release from the hypothalamo-neurohypophysial system. Simultaneously, plasma AVP and OT level was significantly diminished after Gal treatment in dehydrated rats. These results suggest that modulatory effect of galanin on vasopressin and oxytocin release depends on the actual state of water metabolism. Gal acts as an inhibitory neuromodulator of AVP and OT secretion under conditions of the dehydration but stimulates this process in the state of equilibrated water metabolism.  相似文献   

6.
Rats dehydrated up to 12 days were given intraperitoneally methoxamine hydrochloride in a daily dose of 1.0 mg/100 g of initial body weight. The only dose of methoxamine injected into normally hydrated animals did not influence significantly the oxytocic activity neither in the hypothalamus nor in the neural lobe. Following four days of dehydration a distinctly more marked depletion of the hypothalamic (both in the NSO and NPV region) and neurohypophysial oxytocin content was found in animals treated with methoxamine. For the neurohypophysis, a similar effect has been noted under severe dehydration (8th and 12th day) as well.  相似文献   

7.
The effect of CCK-8 (50 ng, i.c.v.) on the neurohypophysial vasopressin and oxytocin storage was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. In another experimental series rats dehydrated for three days were given CCK-8 in a daily i.c.v. dose of 50 ng. The neurohypophysial vasopressin and oxytocin content was bioassayed by pressor effect following Dekański or milk-ejection activity in vitro following van Dongen and Hays, respectively. The decrease of neurohypophysial vasopressin and oxytocin content, brought about by dehydration, was significantly less marked in animals treated with CCK-8. The depletion of neurohypophysial vasopressin and oxytocin content in haemorrhaged animals could be completely inhibited by earlier i.c.v. administration of CCK-8. It is suggested that hypothalamic cholecystokinin may serve as a modulator of neurohypophysial function.  相似文献   

8.
Since the thyrotropin-releasing hormone (TRH) can modulate the processes of vasopressin (AVP) and oxytocin (OT) biosynthesis and release mainly at the hypothalamo-neurohypophysial level, the present experiments were undertaken to estimate whether TRH, administered intravenously in different doses, modifies these mechanisms under conditions of osmotic stimulation, brought about by dehydration. AVP and OT contents in the hypothalamus and neurohypophysis as well as plasma levels of AVP, OT, free thyroxine (FT4) and free triiodothyronine (FT3) were studied after intravenously TRH treatment in euhydrated and dehydrated for two days male rats. Under conditions of equilibrated water metabolism TRH diminished significantly the hypothalamic and neurohypophysial AVP and OT content but was without the effect on plasma oxytocin level; however, TRH in a dose of 100 ng/100 g b.w. raised plasma AVP level. TRH, injected i.v. to dehydrated animals, resulted in a diminution of AVP content in the hypothalamus but did not affect the hypothalamic OT stores. After osmotic stimulation, neurohypophysial AVP and OT release was significantly restricted in TRH-treated rats. Under the same conditions, injections of TRH were followed by a significant decrease of plasma OT level. I.v. injected TRH enhanced somewhat FT3 concentration in blood plasma of euhydrated animals but diminished FT4 plasma level during dehydration. Data from the present study suggest that TRH displays different character of action on vasopressin and oxytocin secretion in relation to the actual state of water metabolism.  相似文献   

9.
The effects of modified adrenergic transmission on the bioassayed storage of vasopressin and oxytocin in the hypothalamus and neurohypophysis under conditions of stress (cold or immobilization), disturbed water balance and pinealectomy are reviewed. Alpha-adrenergic mechanisms seem to be included in the response of vasopressinergic and oxytocinergic neurones to stress; on the other hand, impulses of osmoreceptor origin are of importance in regulatory processes affecting the functional response of these neurones to altered alpha-adrenergic transmission and also to melatonin. The beta-adrenergic (and, to some extent, also the alpha-adrenergic) transmission is probably involved in the neural mechanisms of the pineal-neurohypophysial relationship. Furthermore, a possible regulatory role of cholecystokinin in water metabolism and release of neurohypophysial hormones is suggested.  相似文献   

10.
Radioimmunoreactive vasopressin was measured in plasma, neurohypophysis and hypothalamus of the rats after different procedures of killing: a) microwave irradiation; b) decapitation; c) decapitation following a stress induced by immobilization in a restrainer. Vasopressin content in the neurohypophysis and hypothalamus was much lower in microwave irradiated than in both decapitated and stressed decapitated rats. In addition, the data from microwave technique were inconsistent with a large scatter. Plasma vasopressin concentration was elevated in both the microwave irradiated and stressed decapitated rats, demonstrating that restraining of the animals induced an excessive stress. Microwave irradiation technique including the necessary manipulation of the animal proved to be less suitable than decapitation technique for the measurement of vasopressin. It is likely that vasopressin in the hypothalamus and neurohypophysis is relatively resistant against post-mortem proteolysis.  相似文献   

11.
Chronic tobacco smoke exposure in the rat was followed by a distinct decrease of both hypothalamic and neurohypophysial oxytocic activity as well as of neurohypophysial vasopressor activity. It is assumed that tobacco smoke exposure increases the release of both neurohypophysial hormones under conditions of chronic experiment.  相似文献   

12.
The aim of this study was to investigate the effect of pineal removal on oxytocin synthesis in the hypothalamus using the colchicine method. To this end, rats were injected intracerebroventricularly (i.c.v.) with colchicine solution (5 microg/5 microl) or normal saline and decapitated 20 h later. The animals were either pinealectomized or sham-operated two or eight weeks before i.c.v. injection. The oxytocin content in the hypothalamus was significantly higher in colchicine-treated rats whereas no significant differences were seen in the neurohypophysial hormone level between saline- or colchicine-injected animals. Thus, colchicine inhibited the hormonal transport but probably did not affect the function of the neurohypophysis. Two weeks after pinealectomy neither the oxytocin synthesis rate nor its neurohypophysial content were significantly different from control values. The oxytocin synthesis rate was increased markedly eight weeks after pineal removal. At that time, the neurohypophysial oxytocin content was reduced suggesting the increased secretion of the hormone. It is concluded that the pineal has an inhibitory impact on both oxytocin synthesis and release.  相似文献   

13.
Galanin is a peptide present in the nervous system and peripheral tissues which exerts a broad range of physiological functions. The influence of centrally administered galanin (Gal; 100 pM i.c.v.) on arginine vasopressin (AVP) and oxytocin (OT) content in the hypothalamus and neurohypophysis as well as on their blood plasma concentration was estimated in male Wistar rats drinking ad libitum 2% solution of natrium chloride per 48 hours. In euhydrated rats and subsequently applied i.c.v. with Gal a significant fall in the hypothalamic and neurohypophysial content of OT but not AVP was observed, however, without simultaneous changes in these neurohormones blood plasma concentration. On the contrary, i.c.v. injection of Gal to salt-loaded rats caused a marked raise in AVP and OT level in the hypothalamus and neurohypophysis with subsequent diminution of both neurohormones concentration in blood plasma. These results suggest that in euhydrated rats Gal has an inhibitory influence on the biosynthesis as well as axonal transport of OT, but not AVP. On the contrary, in salt-loaded rats galanin restricts secretion of both neurohormones into the systemic circulation.  相似文献   

14.
Summary Immunoreactive galanin-like material was recently shown to co-exist with vasopressin in parvocellular and magnocellular perikarya of the paraventricular nucleus in the anterior hypothalamus of the rat (Melander et al. 1986). Since this distribution pattern differed from our observation of oxytocin-associated galanin-like immunoreactivity (LI) in the neurohypophysis, we compared in series of 0.5-m thick sections the localisation of galanin-LI with the localisation of oxytocin and vasopressin/dynorphin in the hypothalamus, the median eminence and the neurohypophysis. In the oxytocin system, galanin-LI was intense in oxytocin varicosities of the neurohypophysis. Oxytocin perikarya of the hypothalamic supraoptic and paraventricular nuclei exhibited galanin-LI only after intraventricular injection of colchicine and when sections were treated with trypsin prior to application of the antibody. In the vasopressin/dynorphin system galanin-LI was intense in hypothalamic perikarya after colchicine injection and in neurohypophysial varicosities after treatment of the sections with trypsin. In these neurones, galanin-LI was absent or weak in all elements when treatments with colchicine or trypsin were omitted. Galanin-LI in the neurohypophysis was not co-localised with the numerous fine endings showing GABA-LI. These observations indicate that galanin-like material coexists with vasopressin and oxytocin in the respective magnocellular neurones, although not always in an immunoreactive form.  相似文献   

15.
The pineal hormone, melatonin, is known to modify, under different experimental conditions, neurohypophysial hormone secretion in the rat. The aim of this study was to investigate the effect of melatonin on the vasopressin biosynthesis rate in the hypothalamus of either pinealectomized or sham-operated rats, using the colchicine method. To estimate whether colchicine affects the function of the neurohypophysis in these animals, the neurohypophysial and plasma vasopressin levels were also measured. The vasopressin synthesis rate was increased after pineal removal, when compared with sham-operated animals, and melatonin strongly inhibited the rise in the hormone synthesis due to pinealectomy. After pineal removal plasma vasopressin concentration was significantly elevated, and melatonin attenuated this effect. On the contrary, the neurohypophysial vasopressin content was significantly decreased after pinealectomy, but it was not further modified by melatonin.Thus, melatonin suppresses the synthesis and secretion of vasopressin in pinealectomized rats. The present results confirm our previous reports as to the inhibitory impact of the pineal on both vasopressin synthesis and release and suggest that melatonin may mediate the effect of the pineal gland on vasopressinergic neuron activity.  相似文献   

16.
The relationship of endogenous opiate peptides of rat neuro-intermediate lobe to the release of neurohypophysial peptides has been investigated. Both dehydrated rats, with increased oxytocin and vasopressin release, as well as rats homozygous for hypothalamic diabetes insipidus (DI) of the Brattleboro strain, with increased oxytocin release, showed significantly decreased levels of pituitary opiate peptides. We suggest that neuro-intermediate lobe opiate peptides may modulate the release of neurohypophysial antidiuretic peptides.  相似文献   

17.
Plasma ACTH and/or corticosterone levels were measured in conscious rats 30 min after subcutaneous administration of arginine vasopressin (AVP), oxytocin (OT) and various analogs with a large range of activity on the vasopressor (V1), antidiuretic (V2) or oxytocic receptors. The comparison of their dose-response curves indicated that two different mechanisms are involved in the release of ACTH by neurohypophysial peptides and their analogs. AVP itself and a specific vasopressor agonist (Phe2, Orn8, OT) displayed a similar, high slope dose-response curve. Non-vasopressor analogs, such as dDAVP were characterized by a low slope dose-response curve. Furthermore, dDAVP potentiated CRF and neither its own ACTH-releasing action nor its potentiation of CRF were sensitive to previous VI- or V2-receptor blockade. These results, together with other available data, are interpreted as indicative of the existence of two mechanisms of action for ACTH release by AVP and its analogs in vivo: an indirect action via endogenous CRF release, mediated by a VI receptor mechanism, and a direct action on the pituitary, shared by dDAVP and other non-vasopressor analogs, with receptor characteristics different to both the V1 and the V2 classical types.  相似文献   

18.
The mechanism of post-haemorrhagic vasopressin release from the neurohypophysis was studied in rats anaesthetized with urethane. Neurohypophysial vasopressin content was determined according to Dekański and plasma renin activity by radioimmunoassay. In animals bled (1.5% body weight) 60 min after induction of anaesthesia and 30 min after bilateral nephrectomy vasopressin content of the posterior pituitary was significantly higher than in sham-nephrectomized rats. However, when haemorrhage was produced 240 min after induction of anaesthesia and 210 min after nephrectomy, the neurohypophysial vasopressin content was low and similar as that in non-nephrectomized animals. It is concluded that in the phase directly following haemorrhage vasopressin release depends on acute activation of the renin-angiotensin system. Other mechanisms, possibly circulatory reflexes, are involved in the late phase, during prolonged anaesthesia.  相似文献   

19.
The influence of adrenalectomy and administration of hypertonic saline on the amount of vasopressin, oxytocin, and neurophysin contained in the median eminence and the neural lobe of rats was studied by means of the following methods: (i) morphometric and microphotometric analyses of aldehyde fuchsin-stained histological sections of the neurohypophysis; (ii) immunohistochemical demonstration of vasopressin, oxytocin, and neurophysin in the neurohypophysis, and (iii) radioimmunological measurement of vasopressin and oxytocin in extracts of the median eminence and the neural lobe. Adrenalectomy increases the amount of vasopressin and neurophysin in the external layer of the median eminence but does not change the content of oxytocin. It has no influence on the amount of vasopressin, oxytocin, and neurophysin demonstrable in the inner layer of the median eminence and in the neural lobe two weeks after the operation. Hypertonic saline markedly diminishes the vasopressin, oxytocin, and neurophysin content of the inner layer of the median eminence and the neural lobe but reduces only slightly, if at all, the amount of vasopressin and neurophysin in the outer layer of the median eminence. The findings support the concept that osmotic stress reduces only the vasopressin and oxytocin content of the hypothalamus-neural lobe system and has no or only little influence on the vasopressin content of the outer layer of the median eminence.  相似文献   

20.
In rats dehydrated up to 12 days the neurohypophysial vasopressin content was determined by Dekański's method. Carbamylcholine inhibited somewhat the vasopressin depletion in the neurohypophysis, but not earlier than under severe dehydration (8th and 12th day). A single dose of atropine given 24 h prior to sacrifice to not dehydrated animals resulted in a diminution of the vasopressin content in the neurohypophysis; in animals dehydrated for four days and parallely atropinized the decrease of the neurohypophyseal vasopressin content was, on the contrary, considerably inhibited. Under severe dehydration, the treatment with atropine did not change the vasopressin stores in the neural lobe. Phenoxybenzamine inhibited the vasopressin depletion in the neural lobe following four days of dehydration. Under severe dehydration, amphetamine potentiated the effect of osmoreceptor stimulation. It is supposed that impulses of osmoreceptor origin are of some importance in determining the vasopressin release following changes of cholinergic or adrenergic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号