共查询到20条相似文献,搜索用时 0 毫秒
1.
The FBF RNA binding proteins control multiple aspects of C. elegans germline development, including sex determination. FBF promotes the oocyte fate at the expense of spermatogenesis by binding a regulatory element in the fem-3 3'UTR and repressing this sex-determining gene. Here we report the discovery of GLD-3, a Bicaudal-C homolog and cytoplasmic protein that physically interacts with FBF. Using RNAi and a gld-3 deletion mutant, we show that GLD-3 promotes the sperm fate, a sex determination effect opposite to that of FBF. By epistasis analysis, GLD-3 acts upstream of FBF, and, in a yeast three-hybrid assay, GLD-3 interferes specifically with FBF binding to the fem-3 3'UTR. We propose that GLD-3 binds FBF and thereby inhibits its repression of target mRNAs. 相似文献
2.
3.
Maintenance of the stem cell population in the C. elegans germline requires GLP-1/Notch signaling. We show that this signaling inhibits the accumulation of the RNA binding protein GLD-1. In a genetic screen to identify other genes involved in regulating GLD-1 activity, we identified mutations in the nos-3 gene, the protein product of which is similar to the Drosophila translational regulator Nanos. Our data demonstrate that nos-3 promotes GLD-1 accumulation redundantly with gld-2, and that nos-3 functions genetically downstream or parallel to fbf, an inhibitor of GLD-1 translation. We show that the GLD-1 accumulation pattern is important in controlling the proliferation versus meiotic development decision, with low GLD-1 levels allowing proliferation and increased levels promoting meiotic entry. 相似文献
4.
5.
6.
The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation. 相似文献
7.
8.
9.
Zhang H Christoforou A Aravind L Emmons SW van den Heuvel S Haber DA 《Molecular cell》2004,14(6):841-847
Epigenetic silencing of Hox cluster genes by Polycomb group (PcG) proteins is thought to involve the formation of a stably inherited repressive chromatin structure. Here we show that the C. elegans-specific PcG protein SOP-2 directly binds to RNA through three nonoverlapping regions, each of which is essential for its localization to characteristic nuclear bodies and for its in vivo function in the repression of Hox genes. Functional studies indicate that the RNA involved in SOP-2 binding is distinct from either siRNA or microRNA. Remarkably, the vertebrate PcG protein Rae28, which is functionally and structurally related to SOP-2, also binds to RNA through an FCS finger domain. Substitution of the Rae28 FCS finger for the essential RNA binding region of SOP-2 partially restores localization to nuclear bodies. These observations suggest that direct binding to RNA is an evolutionarily conserved and potentially important property of PcG proteins. 相似文献
10.
In C. elegans, the Notch receptor GLP-1 is localized within the germline and early embryo by translational control of glp-1 mRNA. RNA elements in the glp-1 3'untranslated region (3' UTR) are necessary for repression of glp-1 translation in germ cells, and for localization of translation to anterior cells of the early embryo. The direct regulators of glp-1 mRNA are not known. Here, we show that a 34 nucleotide region of the glp-1 3' UTR contains two regulatory elements, an element that represses translation in germ cells and posterior cells of the early embryo, and an element that inhibits repressor activity to promote translation in the embryo. Furthermore, we show that the STAR/KH domain protein GLD-1 binds directly and specifically to the repressor element. Depletion of GLD-1 activity by RNA interference causes loss of endogenous glp-1 mRNA repression in early meiotic germ cells, and in posterior cells of the early embryo. Therefore, GLD-1 is a direct repressor of glp-1 translation at two developmental stages. These results suggest a new function for GLD-1 in regulating early embryonic asymmetry. Furthermore, these observations indicate that precise control of GLD-1 activity by other regulatory factors is important to localize this Notch receptor, and contributes to the spatial organization of Notch signaling. 相似文献
11.
12.
The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. 总被引:4,自引:0,他引:4 下载免费PDF全文
The Caenorhabditis elegans sex determination gene, tra-2, is translationally regulated by elements in the 3'-untranslated region called TGEs. TGEs govern the translation of mRNAs in both invertebrates and vertebrates, indicating that this is a highly conserved mechanism for controlling gene activity. A factor called DRF, found in worm extracts binds the TGEs and may be a repressor of translation. Using the yeast three-hybrid screen and RNA gel shift analysis, we have found that the protein GLD-1, a germline-specific protein and a member of the STAR family of RNA-binding proteins, specifically binds to the TGEs. GLD-1 is essential for oogenesis, and is also necessary for spermatogenesis and inhibition of germ cell proliferation. Several lines of evidence demonstrate that GLD-1 is a translational repressor acting through the TGEs to repress tra-2 translation. GLD-1 can repress the translation of reporter RNAs via the TGEs both in vitro and in vivo, and is required to maintain low TRA-2A protein levels in the germline. Genetic analysis indicates that GLD-1 acts upstream of the TGE control. Finally, we show that endogenous GLD-1 is a component of DRF. The conservation of the TGE control and the STAR family suggests that at least a subset of STAR proteins may work through the TGEs to control translation. 相似文献
13.
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA-binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators. 相似文献
14.
Translational control is an essential mechanism of gene control utilized throughout development, yet the molecular mechanisms underlying translational activation and repression are poorly understood. We have investigated the translational control of the C. elegans caudal homolog, pal-1, and found that GLD-1, a member of the evolutionarily conserved STAR/Maxi-KH domain family, acts through a minimal pal-1 3' UTR element to repress pal-1 translation in the distal germline. We also provide data suggesting that GLD-1 may repress pal-1 translation after initiation. Finally, we show that GLD-1 represses the distal germline expression of the KH domain protein MEX-3, which was previously shown to repress PAL-1 expression in the proximal germline and which appears specialized to control PAL-1 expression patterns in the embryo. Hence, GLD-1 mediates a developmental switch in the control of PAL-1 repression, allowing MEX-3 to accumulate and take over the task of PAL-1 repression in the proximal germline, where GLD-1 protein levels decline. 相似文献
15.
In Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes. Here we report on the cloning and characterization of the sex determination gene mog-2. MOG-2 is the worm homolog of spliceosomal protein U2A′. We found that MOG-2 is expressed in most nuclei of somatic and germ cells. In addition to its role in sex determination, mog-2 is required for meiosis. Moreover, MOG-2 binds to U2B″/RNP-3 in the absence of RNA. We also show that MOG-2 associates with the U2 snRNA in the absence of RNP-3. Therefore, we propose that MOG-2 is a bona fide component of the U2 snRNP. Albeit not being required for general pre-mRNA splicing, MOG-2 increases the splicing efficiency to a cryptic splice site that is located at the 5′ end of the exon. 相似文献
16.
Mutations in the X-linked gene sdc-1 affect both sex determination and X-chromosome dosage compensation in C. elegans, providing evidence that these two pathways share a common step. In XX animals (normally hermaphrodites), sdc-1 mutations cause partial masculinization and elevated levels of X-linked gene expression, an apparent shift of both pathways toward their XO modes of expression. The masculinization occurs through effects on the major sex determination pathway, upstream of all previously identified sex-determining genes. XO animals are apparently unaffected by the sdc-1 mutations. We propose a model in which the wild-type sdc-1 activity is either a component of the primary sex-determining signal (the X/Autosome ratio) or involved in transmitting information about this signal to both the sex determination and dosage compensation pathways. 相似文献
17.
Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. 总被引:10,自引:1,他引:9 下载免费PDF全文
The Bicaudal-C (Bic-C) gene of Drosophila melanogaster is required for correct targeting of the migrating anterior follicle cells and for specifying anterior position. Females lacking any wild type copies of Bic-C produce only eggshells open at the anterior end, because of the failure of the columnar follicle cells to migrate in the correct position at the nurse cell--oocyte boundary. Embryos which develop from eggs produced in females with only one wild type copy of Bic-C show defects in anterior patterning and an abnormal persistence of oskar RNA in anterior regions. We cloned Bic-C and found that, in ovaries, Bic-C RNA is expressed only in germline cells. Bic-C RNA is localized to the oocyte in early oogenesis, and later concentrates at its anterior cortex. The Bic-C protein includes five KH domains similar to those found in the human fragile-X protein FMR1. Alteration of a highly conserved KH domain codon by mutation abrogates in vivo Bic-C function. These results suggest roles for the Bic-C protein in localizing RNAs and in intercellular signaling. 相似文献
18.
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant. 相似文献
19.
Sex-specific elimination of cells by apoptosis plays a role in sex determination in Caenorhabditis elegans. Recently, a mammalian pro-apoptotic protein named F1Aalpha has been identified. F1Aalpha shares extensive homology throughout the entire protein with the C. elegans protein, FEM-1, which is essential for achieving all aspects of the male phenotype in the nematode. In this report, the role of FEM-1 in apoptosis was investigated. Overexpression of FEM-1 induces caspase-dependent apoptosis in mammalian cells. FEM-1 is cleaved in vitro by the C. elegans caspase, CED-3, generating an N-terminal cleavage product that corresponds to the minimal effector domain for apoptosis. Furthermore, CED-4 associates with FEM-1 in vitro and in vivo in mammalian cells and potentiates FEM-1-mediated apoptosis. Similarly, Apaf-1, the mammalian homologue of CED-4 was found to associate with F1Aalpha. These data suggest that FEM-1 and F1Aalpha may mediate apoptosis by communicating directly with the core machinery of apoptosis. 相似文献
20.
Navarro RE Shim EY Kohara Y Singson A Blackwell TK 《Development (Cambridge, England)》2001,128(17):3221-3232
A high frequency of apoptosis is a conserved hallmark of oocyte development. In C. elegans, about half of all developing oocytes are normally killed by a physiological germline-specific apoptosis pathway, apparently so that they donate cytoplasm to the survivors. We have investigated the functions of CGH-1, the C. elegans ortholog of the predicted RNA helicase ste13/ME31B/RCK/p54, which is germline-associated in metazoans and required for sexual reproduction in yeast. We show that CGH-1 is expressed specifically in the germline and early embryo, and is localized to P granules and other possible mRNA-protein particles. cgh-1 is required for oocyte and sperm function. It is also needed to prevent the physiological germline apoptosis mechanism killing essentially all developing oocytes, making lack of cgh-1 function the first stimulus identified that can trigger this mechanism. We conclude that cgh-1 and its orthologs may perform conserved functions during gametogenesis, that in C. elegans certain aspects of oocyte development are monitored by the physiological germline apoptosis pathway, and that similar surveillance mechanisms may contribute to germline apoptosis in other species. 相似文献