首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The participation of cyclic nucleotide-dependent intracellular signalling pathways in the pigment translocation induced by pigment-dispersing hormone (α -PDH) or pigment-concentrating hormone (PCH) was investigated in the erythrophores of the freshwater shrimp, Macrobrachium potiuna. Cholera toxin, forskolin and dibutyryl cyclic adenosine 3′5′ monophosphate (dbcAMP) were able to induce pigment dispersion with effective agonist concentrations for half maximal response (EC50 s) of 2.8 · 10−11 mol · l−1, 7.0 · 10−7 mol · l−1 and 3.3 · 10−7 mol · l−1, respectively. KT5720 (10−7 mol · l−1 and 10−6 mol · l−1) significantly shifted the dose response curve to α -PDH to the right. Dibutyryl cyclic guanosine 3′5′ monophosphate (dbcGMP) was ineffective in inducing either pigment aggregation or dispersion. 2′5′ dideoxyadenosine (DDA) and SQ22,536 essentially elicit a pigment-aggregating response in a dose-dependent manner. These effects were not due to the activation of purinergic receptors, since concentrations up to 10−4 mol · l−1 of adenosine and adenosine triphosphate (ATP), and up to 10−3 mol · l−1 of uracil triphosphate (UTP) did not elicit pigment aggregation. In order to verify if PCH decreased cyclic adenosine 3′5′ monophosphate (cAMP) levels, cumulative dose-response curves to PCH in the absence and presence of pertussis toxin and 8-MOM-IBMX were determined. However, neither drug significantly affected PCH activity. The levels of cAMP in the integument cells of M. potiuna were significantly increased (P < 0.05) by α -PDH (10−7 mol · l−1) and forskolin (10−6 mol · l−1), but were not affected by PCH (10−7 or 10−10 mol · l−1). In conclusion, α -PDH seems to elicit pigment dispersion through the activation of a Gs-protein coupled receptor resulting in cAMP increase and cAMP-dependent protein kinase (PKA) activation. Furthermore, although a decrease in cAMP was assumed to be responsible in turn for the action of PCH, such a decrease could not be directly demonstrated. Accepted: 11 August 1998  相似文献   

2.
The protective effect of endogenous prostaglandins on the fish gastric mucosa was evaluated by studying the effect of indomethacin and aspirin, known cyclooxigenase inhibitors, on the mucosal ulceration in the isolated gastric sacs of Anguilla anguilla. Gastric sacs devoid of muscle layers were incubated in the presence of indomethacin (10−4 mol · l−1) or aspirin (10−4 mol · l−1) in different experimental conditions. Both the anti-inflammatory drugs produced ulcers, but the effects were more severe in the presence of histamine and in the absence of HCO3 in the incubation bath. The effects of prostaglandin E2 (PGE2) on acid secretion rate (JH) and on alkaline secretion rate (JOH) were evaluated (with the aid of the pH stat method) in isolated gastric mucosa mounted in Ussing chambers. We found that PGE2 (10−8–10−5 mol · l−1) increased JH in a dose-dependent manner. In tissues pretreated with luminal omeprazole (10−4 mol · l−1), PGE2 stimulated gastric alkaline secretion. It was nullified by serosal removal of HCO3 or Na+ and by serosal ouabain (10−4 mol · l−1). These results suggested that prostaglandins also exert their protective effects in fish gastric mucosa. This protection seems partially due to a stimulation of exogenous HCO3 transport from the serosal to the mucosal side. It is likely that this transport is an active transcellular mechanism coupled to Na+ transport. Accepted: 14 April 2000  相似文献   

3.
The inhibitory motoneurons of crustaceans form synapses both with the sarcolemma of muscle fibres and with the very distal branchings of the excitatory motoneurons. The transmitter of these synapses is GABA (γ-aminobutyric acid) which is known to open Cl channels. Studies on the dactyl opener muscle of crayfish suggest that application of GABA not only leads to an increase in the Cl permeability but also to a considerable HCO 3 conductance that causes an intracellular acidification. To investigate possible physiological implications, we measured the intracellular pH of various muscle fibre types of crayfish and crab using pH-sensitive microelectrodes. Independent of the presence or absence of inhibitory innervation, bath application of 10−5 mol l−1 GABA led to acidification in all fibre types (pH change: 0.14 ± 0.08, n=11). In no preparation was a change in intracellular pH observed upon stimulation of specific or common inhibitory motoneurons with 10–40 pulses s−1 for 2–5 min. The results suggest that HCO 3 conductance cannot be activated through synaptic GABA receptors. However, all crustacean muscle fibre types seem to possess extrasynaptic GABA-sensitive channels that exhibit a considerable HCO 3 conductance. The physiological importance of these channels remains to be elucidated. Accepted: 13 July 2000  相似文献   

4.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

5.
Hypoxia caused by eutrophication occurs over large areas in aquatic systems worldwide. Common carp (Cyprinus carpio) exposed to hypoxia (1 mg · O2 · l−1 and 2 mg · O2 · l−1) for 1 week showed a significant reduction in feeding rate, respiration rate, faecal production and nitrogenous excretion compared to those maintained at normoxia (7 mg · O2 · l−1). Fish exposed to hypoxia showed negative scope for growth (SfG), but no significant difference in the specific growth rate was revealed after 1 week in both hypoxic groups. A significant reduction in RNA/DNA ratio was, however, clearly evident in the white muscle of the 1 mg · O2 · l−1 treatment group, but not in the 2 mg · O2 · l−1 treatment group. Both specific growth rate and RNA/DNA ratio were significantly reduced when fish were exposed to severe hypoxia (0.5 mg · O2 · l−1) for 4 weeks. At all levels of hypoxia, growth reduction was accompanied by a significant decrease in RNA/DNA ratio in white muscle. Covariance analysis showed no significant difference between the slope of RNA/DNA ratio and growth rate under normoxic conditions and 0.5 mg · O2 · l−1 for 4 weeks (F=1.036, P > 0.326), as well as 1.0 mg · O2 · l−1 and 2.0 mg · O2 · l−1 for 1 week (F = 0.457, P > 0.5), indicating that the RNA/DNA ratio serves as a biomarker of growth under all oxygen levels, at least under controlled experimental conditions. SfG also appears to be more sensitive than the RNA/DNA ratio in responding to hypoxia in fish. Accepted: 15 September 2000  相似文献   

6.
1. In rat ileal smooth muscle both adenosine and ATP at 10−4 M significantly enhanced spontaneous mechanical activity. The excitatory actions of adenosine were blocked by the P1 receptor antagonist 8-phenyltheophylline and the excitatory effects of ATP were significantly reduced by the P2 receptor antagonist quinidine.2. The P2 receptor desensitizer α,β-methylene-ATP was without effect on ACh responses nor did the stable analogue β,gg-methylene-ATP exert any effect on spontaneous mechanical activity.3. Pretreatment with adenosine caused a dose-dependent enhancement of K-induced contractures in the ileum. Low adenosine concentrations slightly inhibited and high concentrations slightly enhanced ACh-induced contractures in the ileum.4. ATP potentiated the phasic component of the ileal K-induced contracture but strongly inhibited tonic force at high concentrations. This agent slightly inhibited the phasic component of the ACh-induced contracture while strongly inhibiting ACh-induced tonic force.5. α,β-methylene-ATP inhibited ileal muscle ACh induced contractures while it potentiated both phasic and tonic K-induced contractures. β, γ-methylene ATP inhibited ACh-induced contractures but it enhanced K-induced phasic contractures while inhibiting K-induced tonic force.6. The results of this study suggest that rat ileum may contain the A1 subtype of the P1 receptor but the evidence for a P2 receptor subtype is conflicting despite the inhibition of ATP actions by quinidine.7. The inhibition of K- and ACh-induced tonic force suggests that adenosine and ATP interactions with ileal smooth muscle may inactivate slow voltage-dependent calcium channels leading to EC uncoupling.  相似文献   

7.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

8.
Physiological effects of exposure to silver (AgCln n−1; 250 μg Ag l−1 or 1000 μg Ag l−1) in seawater fish were investigated using adult starry flounders. While all fish survived up to 10 days in 250 μg Ag l−1, flounders started to die after day 4 in 1000 μg l−1. Dose-dependent increases in plasma and hepatic silver concentrations showed that silver was available for uptake. There were minimal negative effects on hematological parameters, acid-base status, and blood gases. Plasma ammonia showed a pronounced (three- to four-fold), but transient increase in flounders exposed to either 250 μg Ag l−1 or 1000 μg Ag l−1. Whole body ammonia and acid equivalent efflux measurements indicated that ammonia retention was due to a combination of stimulated production and inhibited excretion. In the 1000-μg Ag l−1 group there was a similar transient increase in plasma [magnesium], which was restored by day 4. In contrast, plasma chloride and sodium levels increased gradually towards the point when fish began to die. At 250 μg Ag l−1, the Na+/K+-ATPase activity of the intestine was unaffected but there was a two-fold increase in branchial Na+/K+-ATPase activity. The latter effect was interpreted as compensation for an elevated chloride and sodium load. The increases in plasma chloride and sodium concentrations were accompanied by a marked suppression of drinking, thereby indicating that acute silver toxicity was likely caused by a combination of elevated electrolyte concentrations and dehydration. Accepted: 9 June 1999  相似文献   

9.
Production of sophorolipids from whey   总被引:5,自引:0,他引:5  
Sophorolipids, obtained by a two-stage process starting from deproteinized whey concentrate using Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214, were compared to products from one-stage processes, using different lipidic compounds as substrates. Results showed that above all carbon source and not cultivation conditions had a distinct influence on the composition of the crude product mixture and therefore on the physicochemical and biological properties of the sophorolipids, such as, for example, surface activity, cytotoxicity and stability against hydrolases. The results were completed by corresponding data for purified mono- and diacetylated (17-hydroxyoctadecenoic)-1′,4′′-lactonized sophorolipids. Crude sophorolipid mixtures showed moderate to good surface active properties (SFTmin 39 mN m−1, CMC 130 mg l−1), water solubilities (2–3 g l−1) and low cytotoxicities (LC50 300–700 mg l−1). In contrast, purified sophorolipids were more surface active (SFTmin 36 mN m−1, CMC 10 mg l−1), less water soluble (max. 70 mg l−1) and showed stronger cytotoxic effects (LC50 15 mg l−1). Incubation of crude sophorolipid mixtures with different hydrolases demonstrated that treatment with commercially available lipases such as from Candida rugosa and Mucor miehei distinctly reduced the surface active properties of the sophorolipids, while treatment with porcine liver esterase and glycosidases had no effect. Received: 23 February 1999 / Received revision: 27 May 1999 / Accepted: 28 May 1999  相似文献   

10.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

11.
1,3-Propanediol inhibition during glycerol fermentation to 1,3-propanediol by Clostridium butyricum CNCM 1211 has been studied. The initial concentration of the 1,3-propanediol affected the growth of the bacterium more than the glycerol fermentation. μ max was inversely proportional to the initial concentration of 1,3-propanediol (0–65 g l−1). For glycerol at 20 g l−1, the growth and fermentation were completely stopped at an initial 1,3-propanediol concentration of 65 g l−1. However, for an initial 1,3-propanediol concentration of 50 g l−1 and glycerol at 70 g l−1, the final concentration (initial and produced) of 1,3-propanediol reached 83.7 g l−1(1.1 M), with complete consumption of the glycerol. Therefore, during the fermentation, the strain tolerated a 1,3-propanediol concentration higher than the initial inhibitory concentration (65 g l−1). The addition of 1,2-propanediol or 2,3-butanediol (50 g l−1) in the presence of glycerol (50–100 g l−1), showed that 2-diols reduced the μ max in a similar way to 1,3-propanediol. The measurement of the osmotic pressure of glycerol solutions, diols and diol/glycerol mixtures did not indicate any differences between these compounds. The hypothesis of diol inhibition was discussed. Taking into account the strain tolerance of highly concentrated 1,3-propanediol during fermentation, the fermentation processes for optimising production were considered. Received: 15 November 1999 / Revision received: 1 February 2000 / Accepted: 4 February 2000  相似文献   

12.
Microbial community of acetate utilizing denitrifiers in aerobic granules   总被引:2,自引:0,他引:2  
Nitrite accumulates during biological denitrification processes when carbon sources are insufficient. Acetate, methanol, and ethanol were investigated as supplementary carbon sources in the nitrite denitrification process using biogranules. Without supplementary external electron donors (control), the biogranules degraded 200 mg l−1 nitrite at a rate of 0.27 mg NO2–N g−1 VSS h−1. Notably, 1,500 mg l−1 acetate and 700 mg l−1 methanol or ethanol enhanced denitrification rates for 200 mg l−1 nitrite at 2.07, 1.20, and 1.60 mg NO2–N g−1 VSS h−1, respectively; these rates were significantly higher than that of the control. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of the nitrite reductase (NiR) enzyme identified three prominent bands with molecular weights of 37–41 kDa. A linear correlation existed between incremental denitrification rates and incremental activity of the NiR enzyme. The NiR enzyme activity was enhanced by the supplementary carbon sources, thereby increasing the nitrite denitrification rate. The capacity of supplementary carbon source on enhancing NiR enzyme activity follows: methanol > acetate > ethanol on molar basis or acetate > ethanol > methanol on an added weight basis.  相似文献   

13.
Claudia Grimmer  Ewald Komor 《Planta》1999,209(3):275-281
Castor bean (Ricinus communis L.) plants were grown for 5–7 weeks in a controlled environment at 350 μl l−1 or 700 μl l−1 CO2. Carbon assimilation, assimilate deposition, dark respiration and assimilate mobilization were measured in leaves 2, 3 and 4 (counted from the base of the plant), and a balance sheet of carbon input and export was elaborated for both CO2 concentrations. Carbon dioxide assimilation was nearly constant over the illumination period, with only a slight depression occurring at the end of the day in mature source leaves, not in young source leaves. Assimilation was ca. 40% higher at 700 μl l−1 than at 350 μl l−1 CO2. The source leaves increased steadily in weight per unit area during the first 3 weeks, more at 700 μl l−1 than at 350 μl l−1 CO2. On top of an irreversible weight increase, there was a large gain in dry weight during the day, which was reversed during the night. This reversible weight gain was constant over the life time of the leaf and ca. 80% higher at 700 μl l−1 than at 350 μl l−1. Most of it was due to carbohydrates. The carbon content (as a percentage) was not altered by the CO2 treatment. Respiration was 25% higher in high-CO2 plants when based on leaf area, but the same when based on dry weight. The rate of carbon export via the phloem was the same during the daytime in plants grown at 350 μl l−1 and 700 μl l−1 CO2. During the night the low-CO2 plants had only 50% of the daytime export rate, in contrast to the high-CO2 plants which maintained the high export rate. It was concluded that the phloem loading system is saturated during the daytime in both CO2 regimes, whereas during the night the assimilate supply is reduced in plants in the normal CO2 concentration. Two-thirds of the carbon exported from the leaves was permanently incorporated as plant dry matter in the residual plant parts. This “assimilation efficiency” was the same for both CO2 regimes. It is speculated that under 350 μl l−1 CO2 the growing Ricinus plant operates at sink limitation during the day and at source limitation during the night. Received: 2 February 1999 / Accepted: 19 April 1999  相似文献   

14.
Songbirds are widely studied to investigate the hormonal control of behavior. However, little is known about the effects of steroids on neurotransmission in these birds. We used electrophysiological and pharmacological techniques to characterize γ-aminobutyric acid (GABA) type A receptors (GABAA) of primary cultured telencephalic and hippocampal neurons from developing zebra finches. Additionally, their modulation by 17β-estradiol(E2), 5α- and 5β-dihydrotestosterone (DHT), 5α- and 5β-pregnan-3α-ol-20-one, and corticosterone was examined. Whole-cell GABA-evoked currents were inhibited by picrotoxin (10 μmol l−1) and bicuculline methiodide (10 μmol l−1) and potentiated by pentobarbital (100 μmol l−1) and propofol (3 μmol l−1). Loreclezole (10 μmol l−1) potentiated GABA-evoked currents, suggesting the presence of β2, β3 and/or β4 subunits. Diazepam (1 μmol l−1) potentiated currents, while Zn2+ (1 μmol l−1) caused no inhibition, indicating the presence of γ subunits. 5α- and 5β-Pregnan-3α-ol-20-one (100 nmol l−1) potentiated currents, whereas E2 (1 μmol l−1), 5α- and 5β-DHT (1 μmol l−1), and corticosterone (10 μmol l−1) had no detectable effect. We conclude that zebra finch telencephalic and hippocampal GABAA receptors include α, β, and γ subunits and are similar to their mammalian counterparts in both their biophysical and pharmacological properties. Additionally, GABA-evoked currents are greatly potentiated by 5α- and 5β-pregnan-3α-ol-20-one but show little or no acute modulation by sex steroids or corticosterone. Accepted: 12 November 1997  相似文献   

15.
A whey solution was used as a substrate for methane production in an anaerobic fixed-bed reactor. At a hydraulic retention time of 10 days, equivalent to a space loading of 3.3 kg (m3 day)−1, 90% of the chemical oxygen demand was converted to biogas. Only a little propionate remained in the effluent. Toxicity tests with either copper chloride, zinc chloride or nickel chloride were performed on effluent from the reactor. Fifty per cent inhibition of methanogenesis was observed in the presence of ≥10 mg CuCl2 l−1≥40 mg ZnCl2 l−1 and ≥60 mg NiCl2 l−1, respectively. After exposure to Cu2+, Zn2+ or Ni2+ ions for 12 days, complete recovery of methanogenesis by equimolar sulfide addition was possible upon prolonged incubation. Recovery failed, however, for copper chloride concentrations ≥40 mg l−1. If the sulfide was added simultaneously with the three heavy metal salts, methanogenesis was only slightly retarded and the same amount of methane as in non-inhibited controls was reached either 1 day (40 mg ZnCl2 l−1) or 2 days later (10 mg CuCl2 l−1). Up to 60 mg NiCl2 l−1 had no effect if sulfide was present. Sulfide presumably precipitated the heavy metals as metal sulfides and by this means prevented heavy metal toxicity. Received: 8 October 1999 / Received revision: 3 January 2000 / Accepted: 4 January 2000  相似文献   

16.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

17.
Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.  相似文献   

18.
A fluidized-bed reactor (FBR) was used to enrich an aerobic chlorophenol-degrading microbial culture. Long-term continuous-flow operation with low effluent concentrations selected oligotrophic microorganisms producing good-quality effluent for pentachlorophenol(PCP)-contaminated water. PCP biodegradation kinetics was studied using this FBR enrichment culture. The results from FBR batch experiments were modeled using a modified Haldane equation, which resulted in the following kinetic constants: q max = 0.41 mg PCP mg protein−1 day−1, K S = 16 μg l−1, K i = 5.3 mg l−1, and n = 3.5. These results show that the culture has a high affinity for PCP but is also inhibited by relatively low PCP concentrations (above 1.1 mg PCP l−1). This enrichment culture was maintained over 1 year of continuous-flow operation with PCP as the sole source of carbon and energy. During continuous-flow operation, effluent concentrations below 2 μg l−1 were achieved at 268 min hydraulic retention time (t HR) and 2.5 mg PCP l−1 feed concentration. An increase in loading rate by decreasing t HR did not significantly deteriorate the effluent quality until a t HR decrease from 30 min to 21 min resulted in process failure. Recovery from process failure was slow. Decreasing the feed PCP concentration and increasing t HR resulted in an improved process recovery. Received: 10 October 1996 / Received revision: 21 January 1997 / Accepted: 24 January 1997  相似文献   

19.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

20.
To determine if heat exposure alters the hormonal responses to moderate, repeated exercise, 11 healthy male subjects [age = 27.1 (3.0) years; maximal oxygen consumption, O2max = 47.6 (6.2) ml · kg · min−1; mean (SD)] were assigned to four different experimental conditions according to a randomized-block design. While in a thermoneutral (23°C) or heated (40°C, 30% relative humidity) climatic chamber, subjects performed either cycle ergometer exercise (two 30-min bouts at ≈50% O2max, separated by a 45-min recovery interval, CEx and HEx conditions), or remained seated for 3 h (CS and HS conditions). Blood samples were analyzed for various exercise stress hormones [epinephrine (E), norepinephrine (NE), dopamine, cortisol and human growth hormone (hGH)]. Passive heating did not alter the concentrations of any of these hormones significantly. During both environmental conditions, exercise induced significant (P < 0.001) elevations in plasma E, NE and hGH levels. At 23°C during bout 1: E = 393 (199) pmol · l−1 (CEx) vs 174 (85) pmol · l−1 (CS), NE = 4593 (2640) pmol · l−1 (CEx) vs 1548 (505) pmol · l−1 (CS), and hGH = 274 (340) pmol · l−1 (CEx)vs 64 (112) pmol · l−1 (CS). At 40°C, bout 1: E = 596 (346) pmol · l−1 (HEx) vs 323 (181) pmol · l−1 (HS), NE = 7789 (5129) pmol · l−1 (HEx) vs 1527 (605) pmol · l−1 (HS), and hGH = 453 (494) pmol · l−1 (HEx) vs 172 (355) pmol · l−1 (HS). However, concentrations of plasma cortisol were increased only in response to exercise in the heat [HEx = 364 (168) nmol · l−1 vs HS = 295 (114) nmol · l−1). Compared to exercise at room temperature, plasma levels of E, NE and cortisol were all higher during exercise in the heat (P < 0.001 in all cases). The repetition of exercise did not significantly alter the pattern of change in cortisol or hGH levels in either environmental condition. However, repetition of exercise in the heat increased circulatory and psychological stress, with significantly (P < 0.001) higher plasma concentrations of E and NE. These results indicate a differential response of the various stress hormones to heat exposure and repeated moderate exercise. Accepted: 16 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号