首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. -L. Botha  C. S. Whitehead 《Planta》1992,188(4):478-483
Senescence of Petunia hybrida L. flowers is accompanied by a climacteric pattern in ethylene production and a rapid decline in the levels of putrescine and spermidine during the preclimacteric phase. The decrease in spermidine is caused by the decline in the availability of putrescine which is initially synthesized from L-arginine via agmatine and N-carbamoylputrescine. Inhibition of putrescine and polyamine synthesis resulted in a rapid drop in the levels of putrescine and spermidine without resulting in a concomitant increase in ethylene production. These results indicate that polyamine synthesis is not involved in the control of ethylene synthesis through its effect on the availability of S-adenosylmethionine, and is confirmed by the results obtained with pollinated flowers. Treatment with polyamines may stimulate or suppress ethylene production in the corolla, depending on the concentrations applied. In unpollinated flowers the onset of the climacteric rise in ethylene production was accelerated after treatment with polyamines. However, in pollinated flowers this process was delayed as a result of treatment with low concentrations of polyamines. The effects of exogenous polyamines on ethylene production in both pollinated and unpollinated flowers indicate that ethylene synthesis in these flowers is not regulated by a feedback control mechanism. Although polyamines do not play a key role in the control of ethylene production during the early stages of senescence through their effect on the availability of S-adenosylmethionine, it appears that they play an important role in some of the other processes involved in senescence.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MGBG methylglyoxal bis-(guanylhydrazone) - SAM S-adenosylmethionine  相似文献   

2.
Apparent sucrose uptake. ATPase activity and membrane fluidity changes were studied during the development and senescence of carnation flowers ( Dianthus caryophyllus L., cv. Cerise Royallette). Typical changes associated with senescence of a cut flower, such as respiration, ethylene production and fresh weight, were measured. Concomitant with a rise in respiration and ethylene production and a decline in fresh weight, a sharp decrease in apparent sucrose uptake was observed. Sucrose uptake was pH dependent (pH optimum, 5.5) and influenced by membrane integrity. Apparently, the activity of ATPase is related to sucrose uptake, because similar changes occurred during flower development. In addition, the activity of ATPase was well correlated with membrane fluidity.
It is suggested that sucrose uptake is controlled by ATPase activity, which in turn is modulated by membrane lipid fluidity. The decline in membrane fluidity associated with senescence leads to a corresponding reduction in ATPase activity and sucrose uptake. Further evidence supporting this view comes from experiments in which senescence was enhanced by 1-aminocyclopropane-l-carboxylic acid. It shortened the time to decline in fresh weight, rise in respiration and ethylene production. In parallel, reduction in membrane fluidity, ATPase activity and sucrose uptake were observed.  相似文献   

3.
The relationships between ethylene production, aminocyclopropane-1-carboxylicacid (ACC) content and ethylene-forming-enzyme (EFE) activityduring ageing and cold storage of rose flower petals (Rose hybridaL. cv. Gabriella) were investigated. During flower ageing at20 °C there was a climacteric rise in petal ethylene production,a parallel increase in ACC content, but a continuous decreasein EFE activity. Applied ACC increased petal ethylene productionc. 200-fold. During cold storage of flowers at 1 °C therewere parallel increases in petal ethylene production and ACCcontent, to levels greater than those reached in fresh flowersheld at 20 °C. EFE activity decreased during storage. Immediatelyafter cold-stored flowers were transferred to 20 °C ethyleneproduction and ACC levels were c. four times greater than infreshly cut flowers. These levels increased to maximum valuesof two to four times the maximum values reached during ageingof fresh, unstored, flowers. It was concluded that in rose petalsethylene synthesis is probably regulated by ACC levels and thatcold storage stimulates ethylene synthesis because it increasesthe levels of ACC in the petals. Key words: Rose flower, senescence, ethylene  相似文献   

4.
Changes in water status, membrane permeability, ethylene production and levels of abscisic acid (ABA) were measured during senescence of cut carnation flowers ( Dianthus caryophyllus L. cv. White Sim) in order to clarify the temporal sequence of physiological events during this post-harvest period. Ethylene production and ABA content of the petal tissue rose essentially in parallel during natural senescence and after treatment of young flowers with exogenous ethylene, indicating that their syntheses are not widely separated in time. However, solute leakage, reflecting membrane deterioration, was apparent well before the natural rise in ethylene and ABA had begun. In addition, there were marked changes in water status of the tissue, including losses in water potential (ψw), and turgor (ψp), that preceded the rise in ABA and ethylene. As senescence progressed, ψw continued to decline, but ψp returned to normal levels. These temporal relationships were less well resolved when senescence of young flowers was induced by treatment with ethylene, presumably because the time-scale had been shortened. Thus changes in membrane permeability and an associated water stress in petal tissue appear to be earlier symptoms of flower senescence than the rises in ABA or ethylene. These observations support the contention that the climacteric-like rise in ethylene production is not the initial or primary event of senescence and that the rise in ABA titre may simply be a response to changes in water status.  相似文献   

5.
Conditions inhibiting the action of (supply of silver thiosulfate) or the synthesis of (supply of α-aminooxyacetic acid) ethylene, prolonged the vase-life of carnation ( Dianthus caryophyllus L. cv. Ember) flowers. On the other hand, conditions which provoked an advance in the time of appearance of the ethylene rise (previous exposure to exogenous ethylene), accelerated senescence. This action on the morphological changes was accompanied by an effect on the efflux of electrolytes, which was advanced or delayed depending on the type of treatment, in comparison with the control.
The various factors acting on ethylene production also affected membrane lipids. Those which suppressed or delayed the ethylene rise, slowed down the degradation of the total and free fatty acids and the increase in the level of saturation of the chains. The opposite was observed when the ethylene peak occurred early. There was no correlation between the time of appearance of the burst of ethylene and the time of onset of lipid breakdown.
A 48 h water stress provoked neither an advance in the time of appearance of the ethylene peak nor an acceleration in lipid breakdown on return to normal conditions.  相似文献   

6.
7.
Blooms of Dianthus caryophyllus cv. Crowley Pink (carnations) were held under standard environmental conditions in a range of vase solutions. In the absence of preservative solution the senescence of the flower was characterized by a single sharp peak of ethylene production. Culture in preservative solution greatly extended the life of the bloom and also reduced the output of ethylene. In addition, there was great variability between individual blooms in the timing, the extent and the pattern of ethylene production. Instead of a single peak some blooms had two or even three small peaks which, in some cases, were separated by intervals of several days. Senescence of these flowers was also characteristic of blooms that were not producing ethylene in that the petals often did not inroll. Putrescine and spermidine, when added to the culture solutions, did not delay the onset of senescence, nor did they inhibit ethylene production. In fact, both additives resulted in the earlier production of ethylene and shorter longevity when applied in conjunction with preservatives. Their effects were similar, but less marked when they were applied alone. Although polyamines have been reported to delay senescence in a number of tissues, spermine and putrescine did not have a protective effect in carnation flowers; indeed, in some treatments they advanced senescence.  相似文献   

8.
9.
The lipid microviscosity of microsomal membranes from senescing cut carnation (Dianthus caryophyllus L. cv. White Sim) flowers rises with advancing senescence. The increase in membrane microviscosity is initiated within 3 to 4 days of cutting the flowers and coincides temporally with petal-inrolling denoting the climacteric-like rise in ethylene production. Treatment of young cut flowers with aminoethoxyvinylglycine prevented the appearance of petal-inrolling and delayed the rise in membrane microviscosity until day 9 after cutting. When freshly cut flowers or aminoethoxyvinylglycine-treated flowers were exposed to exogenous ethylene (1 microliter per liter), the microviscosity of microsomal membranes rose sharply within 24 hours, and inrolling of petals was clearly evident. Thus, treatment with ethylene accelerates membrane rigidification. Silver thiosulphate, a potent anti-ethylene agent, delayed the rise in microsomal membrane microviscosity even when the flowers were exposed to exogenous ethylene. Membrane rigidification in both naturally senescing and ethylene-treated flowers was accompanied by an increased sterol:phospholipid ratio reflecting the selective loss of membrane phospholipid that accompanies senescence. The results collectively indicate that the climacteric-like surge in ethylene production during senescence of carnation flowers facilitates physical changes in membrane lipids that presumably lead to loss of membrane function.  相似文献   

10.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

11.
A high rate of ethylene production was observed in buds and young flowers of Aranda orchid, which increased with bud growth, reaching a high value in half-opened flower. This was followed by a gradual decline but it increased again when the flowers showed sign of senescence. Aminooxylacetic acid (AOA) inhibited ethylene production and bud expansion of Aranda buds.  相似文献   

12.
Accumulated experimental evidence suggests that the decline in the content of membrane components such as phospholipids (PL), is a key event in flower senescence. This loss of membrane integrity can be modulated by ethylene. The aim of this work was to examine the interrelationship between ethylene and one of the products of PL metabolism, diacylglycerol (DAG), during petunia ( Petunia hybrida ) flower senescence. DAG's role was studied using phorbol 12-myristate 13-acetate (PMA), which acts similarly in kinase activation. Our results demonstrate for the first time a senescence-related transient increase in the content of DAG in petunia plasma membranes. The climacteric-like ethylene rise associated with petal wilting appeared in petunia flowers well after PL degradation and DAG increase had commenced. The appearance and peak magnitude of the ethylene rise was enhanced or increased, respectively, by PMA treatment, thereby accelerating appearance and magnitude of all senescence parameters assayed. Conversely, suppression of ethylene action by silver thiosulfate (STS) resulted in retardation of flower wilting, as well as in abolishment of the PMA-enhancing effects on senescence. The results suggest an active role for lipid metabolites like DAG in enhancing flower senescence, through regulation of ethylene production and action, or possible activation of kinases. This sequence of events implies that ethylene is a mediator of flower senescence, rather than a trigger of the process.  相似文献   

13.
The senescence of flower petals is a highly regulated developmental process which requires active gene expression and protein synthesis. The biochemical changes associated with petal senescence in carnation flowers include an increase in hydrolytic enzymes, degradation of macro-molecules, increased respiratory activity and a climacteric-like increase in ethylene production. It is clear that the gaseous phytohormone ethylene plays a critical role in the regulation and coordination of senescence processes. Many reviews on physiology and mode of action of ethylene are available. Molecular cloning led to the isolation of genes involved in ethylene biosynthesis and action. This review describes the current status of the studies on regulation of ethylene biosynthesis and ethylene response in carnation flowers. An overview is given of studies on senescence-related gene expression and possibilities to improve postharvest longevity by genetic engineering.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -amino-isobutyric acid - AOA amino oxyacetic acid - AVG aminoathoxyvinyl glycine - DACP diazocyclopentadiene - EFE ethylene forming enzyme - MACC malonyl 1-aminocyclopropane-1-carboxylic acid - MTA 5-methylthio-adenosine - NBD 2,5 norbornadiene - ppb parts per billion - SAM S-adenosyl-methionine - STS silver thiosulphate  相似文献   

14.
Normal and pollination-induced senescence of Petunia hybrida L cv. Pink Cascade flowers is accompanied by an increase in the sensitivity of the corolla to ethylene as indicated by an acceleration in the rate of corolla bluing after exposure to exogenous ethylene. Pollination resulted in the production of short-chain saturated fatty acids ranging in chain length from C6 to C10. Following pollination, these acids are synthesized in the stylar tissue via the acetate pathway within the first 12 hours. The fatty acids are transported rapidly to the corolla where they induce an increase in ethylene sensitivity. In unpollinated flowers, these acids are produced in the corolla during the early stages of senescence. Although the levels of these fatty acids decrease rapidly during the final stages of senescence, a significant increase in ethylene sensitivity could be detected prior to the decrease. It appears that the increase in ethylene sensitivity caused by the synthesis of short-chain saturated fatty acids occurs concurrently, but independent from ethylene synthesis.  相似文献   

15.
The climacteric increase in ethylene production in carnation (Dianthus caryophyllus L. cv White Sim) flowers is known to be accompanied by an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase and ethylene forming enzyme (EFE) activities. When midclimacteric flowers were exposed to 2,5-norbornadiene, which blocks ethylene action, ethylene production began to decrease after 2 to 3 hours. ACC synthase activity was markedly reduced after 4 hours and the increase in EFE activity was blocked indicating that the autocatalytic signal associated with ethylene action stimulates both enzyme activities.  相似文献   

16.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

17.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

18.
In cut carnations ( Dianthus caryophyllus L. cv. Cally). petal senescence was associated with a climacteric pattern in ethylene production and an increase in ethylene sensitivity during the preclimacteric stage. The increase in ethylene sensitivity was caused by short-chain saturated fatty acids (C7 to C10) produced in the petals during the early stages of senescence. Pollination or application of octanoic acid to the styles of unpollinated flowers resulted in a sudden increase in ethylene sensitivity and a marked acceleration of senescence. Treatment with silver thiosulfate (STS) resulted in a suppression of ethylene sensitivity and a marked reduction in the levels of these fatty acids. However, even in STS-treated flowers pollination or treatment with octanoic acid gave rise to a drastic increase in ethylene sensitivity. Exposure of carnation flowers to 2. 5-norbornadicne (NBD) vapours resulted in a dramatic suppression of ethylene sensitivity which was also overridden by stylar application of octanoic acid. Exposure to NBD suppressed the increase in ethylene sensitivity caused by treatment with octanoic acid. It appears that short-chain saturated fatty acids increased ethylene sensitivity by increasing the ability of the tissue to bind ethylene.  相似文献   

19.
20.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号