首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
白念珠菌菌丝发育的遗传调控   总被引:1,自引:0,他引:1  
白念珠菌(Candidaalbicans)是人体内最重要的机会型致病真菌,能以酵母、假菌丝、菌丝等多种形态存在。白念珠菌的菌丝发育与它的致病性成正相关,这一过程由胞内多种信号转导途径所调控。现对控制白念珠菌菌丝发育的主要信号转导途径进行综述。  相似文献   

2.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

3.
Candida albicans is an important human pathogen that causes systemic infections, predominantly among populations with weakened immune systems. The morphological transition from the yeast to the hyphal state is one of the key factors in C. albicans pathogenesis. Owing to their location at the host-pathogen interface, the cell wall and associated proteins are of interest, especially with respect to the yeast to hyphal transition. This study entailed the proteomic analysis of differentially regulated proteins involved in this transition. The protein profiles of C. albicans DTT/SDS-extractible proteins and the cyanogen bromide (CNBr)/trypsin-extractable proteins of a cell wall-enriched fraction from yeast and hyphae were compared. In total, 107 spots were identified from the DTT/SDS-extractible cell wall-enriched fraction, corresponding to 82 unique proteins. Of these DTT/SDS-extractible proteins, 14 proteins were upregulated and 10 were downregulated in response to hyphal induction. Approximately 6-9% of total cell wall-protein-enriched fraction was found to be resistant to DTT/SDS extraction. Analysis of the DTT/SDS-resistant fraction using a CNBr/trypsin extraction resulted in the identification of 29 proteins. Of these, 17 were identified only in the hyphae, four were identified only in the yeast, and eight were identified in both the yeast and hyphae.  相似文献   

4.
A family of 2-lysophosphatidylcholines (lyso-PCs) was isolated from deer antler extract, guided exclusively by hyphal transition inhibitory activity in Candida albicans. Structural determination of the isolated lyso-PCs by spectroscopic methods, including infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, 2D correlation spectroscopy NMR, fast atom bombardment mass spectrometry and tandem mass spectrometry, confirmed that the natural products were composed of at least four different lyso-PCs varying in fatty acid moiety at the sn-1 position of the glycerol backbone. The major lyso-PCs were confirmed as 1-stearoyl-, 1-oleoyl-, 1-linoleoyl- and 1-palmitoyl-2-lyso-sn-glycero-3-phosphatidylcholines. Lyso-PC specifically suppressed the morphogenic transition from yeast to hyphae in C. albicans, without affecting the growth of either yeast or hyphae. Lyso-PC exerted hyphal transition that suppressed activity in the broad spectrum of the Candida species, such as C. albicans, Candida krusei, Candida guilliermondii and Candida parapsilosis. Northern analysis indicated that the suppression was mediated through the mitogen-activated protein kinase pathway.  相似文献   

5.
氨基酸对白念珠菌形态学影响的研究   总被引:2,自引:0,他引:2  
目的初步探讨单个氨基酸对白念珠菌形态学的影响。方法用0.67%的酵母氮源基础培养基和2%葡萄糖配制成SD合成培养基,37%恒温摇床培养,研究单个天然氨基酸对白念珠菌形态学的影响,并分别通过不添加碳源和厌氧条件下培养观察对精氨酸诱导的菌丝的影响。结果在含10mmol/L的L-精氨酸的SD液体培养基中,可见大量的菌丝。在含10mmol/L的L一半胱氨酸、L.苏氨酸、L-缬氨酸和L-色氨酸的sD液体培养基中,可见典型的酵母细胞,未见菌丝。在含10mmol/L的其他单个氨基酸的SD液体培养基中可见混合的酵母和菌丝结构。在不含氨基酸或含各种天然氨基酸的SD固体培养基上,白念珠菌的菌落均光滑。但在含10mmol/L的L-精氨酸固体培养基上,光滑的菌落周围可见小的突起,镜下可见菌丝。无氧条件下,无论有无碳源,含精氨酸的SD培养液中白念珠菌只能形成酵母细胞,生长部分受到抑制。结论精氨酸可以诱导白念珠菌菌丝形成,厌氧条件下精氨酸不能诱导白念珠菌菌丝形成。  相似文献   

6.
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.  相似文献   

7.
Serum induces Candida albicans to make a rapid morphological change from the yeast cell form to hyphae. Contrary to the previous reports, we found that serum albumin does not play a critical role in this morphological change. Instead, a filtrate (molecular mass, <1 kDa) devoid of serum albumin induces hyphae. To study genes controlling this response, we have isolated the RAS1 gene from C. albicans by complementation. The Candida Ras1 protein, like Ras1 and Ras2 of Saccharomyces cerevisiae, has a long C-terminal extension. Although RAS1 appears to be the only RAS gene present in the C. albicans genome, strains homozygous for a deletion of RAS1 (ras1-2/ras1-3) are viable. The Candida ras1-2/ras1-3 mutant fails to form germ tubes and hyphae in response to serum or to a serum filtrate but does form pseudohyphae. Moreover, strains expressing the dominant active RAS1(V13) allele manifest enhanced hyphal growth, whereas those expressing a dominant negative RAS1(A16) allele show reduced hyphal growth. These data show that low-molecular-weight molecules in serum induce hyphal differentiation in C. albicans through a Ras-mediated signal transduction pathway.  相似文献   

8.
Chen Q  Samaranayake LP 《Microbios》2000,102(401):45-52
Subclinical Candida infection has been suggested as one of the aetiological factors in patients with burning mouth syndrome (BMS). In order to investigate the possible factors which contribute to the relatively high isolation rate of Candida in BMS, parotid saliva samples (20 in toto) from patients with this condition were collected and the growth of Candida in each sample dynamically observed using a computerized turbidometric assay system. A total of thirteen parotid saliva samples obtained from healthy individuals served as normal controls. The results showed no significant growth differential within the test and control saliva samples, when a single isolate each of Candida albicans and Candida tropicalis were cultured for 24 h, at 37 degrees C. A single isolate of Candida glabrata tended to grow better in the saliva from BMS patients than the controls. These results indicate that the composition of saliva may be a contributory factor for the high isolation rate of Candida in saliva of BMS patients.  相似文献   

9.
目的探讨大蒜素对白念珠菌形态转换的影响及其作用机制。方法倒置显微镜观察白念珠菌菌丝形成的体外动力学过程;采用CLSI-M27-A3微量液基稀释法检测大蒜素对白念珠菌的最小抑菌浓度(minimum inhibitory concentration,MIC);倒置显微镜观察不同浓度大蒜素对白念珠菌在Spider液体培养基中菌丝形成的影响;qRT-PCR法检测在不同浓度大蒜素作用下白念珠菌菌丝相关基因HWP1、ALS1、EFG1、PDE2表达水平的变化。结果白念珠菌在Spider液体培养基中6 h时出现较长菌丝,24 h后镜下可见大量念珠菌菌丝包裹酵母细胞,紧密交错;大蒜素对白念珠菌的MIC值为25μg/mL;倒置显微镜观察(25~100)μg/mL浓度的大蒜素能明显抑制Spider液体培养基中白念珠菌菌丝的生长;qRT-PCR结果显示,在(25~100)μg/mL浓度的大蒜素作用下,白念珠菌菌丝相关基因表达下调。结论大蒜素能有效抑制白念珠菌的形态转换,其作用机制可能与调节菌丝形成相关基因的表达水平有关。  相似文献   

10.
The Candida albicans CSH3 gene encodes a functional and structural homologue of Shr3p, a yeast protein that is specifically required for proper uptake and sensing of extracellular amino acids in Saccharomyces cerevisiae. A Candida csh3delta/csh3delta null mutant has a reduced capacity to take up amino acids, and is unable to switch morphologies on solid and in liquid media in response to inducing amino acids. CSH3/csh3delta heterozygous strains display normal amino acid induced morphological switching. However, although heterozygous cells apparently sense and properly react to amino acid induced signals they cannot take up amino acids at wild-type rates. Strikingly, both CSH3/csh3delta heterozygous and csh3delta/csh3delta homozygous strains are unable to efficiently mount virulent infections in a mouse model. The haploinsufficiency phenotypes indicate that both CSH3 alleles contribute to maintain high-capacity amino acid uptake in wild-type strains. These results strongly suggest that C. albicans cells use amino acids, presumably as nitrogen sources, during growth in mammalian hosts.  相似文献   

11.
G1 cyclins coordinate environmental conditions with growth and differentiation in many organisms. In the pathogen Candida albicans, differentiation of hyphae is induced by environmental cues but in a cell cycle-independent manner. Intriguingly, repressing the G1 cyclin Cln3p under yeast growth conditions caused yeast cells to arrest in G1, increase in size, and then develop into hyphae and pseudohyphae, which subsequently resumed the cell cycle. Differentiation was dependent on Efg1p, Cph1p, and Ras1p, but absence of Ras1p was also synthetically lethal with repression of CLN3. In contrast, repressing CLN3 in environment-induced hyphae did not inhibit growth or the cell cycle, suggesting that yeast and hyphal cell cycles may be regulated differently. Therefore, absence of a G1 cyclin can activate developmental pathways in C. albicans and uncouple differentiation from the normal environmental controls. The data suggest that the G1 phase of the cell cycle may therefore play a critical role in regulating hyphal and pseudohyphal development in C. albicans.  相似文献   

12.
目的探讨pH值和氧气对白念珠菌菌丝形成的影响。方法通过调节Muller—Hinton液体培养基的pH值和去除培养基中的氧气来观察白念珠菌的生长曲线、倍增时间和菌丝形成率的变化。结果在无氧气的液体培养基中,白念珠菌生长缓慢,不能产生菌丝结构,只有酵母细胞形成。生长曲线的延缓期内各组没有明显差异,而在生长的对数期pH3和pH4的条件下念珠菌生长速度明显慢于pH5、pH6、pH7、pH8和pH9。菌丝形成率在pH3、pH4和pH5条件下〈20%,而在pH6、pH7、pH8和pH9条件下可高达70%。结论厌氧条件抑制白念珠菌的菌丝形成,只形成酵母细胞。白念珠菌在pH3—9的范围内均能生长,偏酸性环境有利于白念珠菌酵母形成,偏碱性的环境有助于菌丝的形成。  相似文献   

13.
Candida albicans and C. dubliniensis are very closely related yeast species. In this study, we have conducted a thorough comparison of the ability of the two species to produce hyphae and their virulence in two infection models. Under all induction conditions tested C. albicans consistently produced hyphae more efficiently than C. dubliniensis. In the oral reconstituted human epithelial model, C. dubliniensis isolates grew exclusively in the yeast form, while the C. albicans strains produced abundant hyphae that invaded and caused significant damage to the epithelial tissue. In the oral-intragastric infant mouse infection model, C. dubliniensis strains were more rapidly cleared from the gastrointestinal tract than C. albicans. Immunosuppression of Candida-infected mice caused dissemination to internal organs by both species, but C. albicans was found to be far more effective at dissemination than C. dubliniensis. These data suggest that a major reason for the comparatively low virulence of C. dubliniensis is its lower capacity to produce hyphae.  相似文献   

14.
The yeast Candida albicans is the most important fungal pathogen of humans and a model organism for studying fungal virulence. Sequencing of the C. albicans genome will soon be completed, allowing systematic approaches to analyse gene function. However, techniques to define and characterize essential genes in this permanently diploid yeast are limited. We have developed an efficient method to create conditional lethal C. albicans null mutants by inducible, FLP-mediated gene deletion. Both wild-type alleles of the CDC42 or the BEM1 gene were deleted in strains that carried an additional copy of the respective gene that could be excised from the genome by the site-specific recombinase FLP. Expression of a C. albicans-adapted FLP gene under the control of an inducible promoter generated cell populations consisting of > or = 99.9% null mutants. Upon plating, these cells were unable to form colonies, demonstrating that CDC42 and BEM1 are essential genes in C. albicans. The cdc42 null mutants failed to produce buds and hyphae and grew as large, round cells instead, suggesting that they lacked the ability to produce polarized cell growth. However, the cells still responded to hyphal inducing signals by aggregating and expressing hypha-specific genes, behaviours typical of the mycelial growth form of C. albicans. Budding cells and germ tubes of bem1 null mutants exhibited morphological abnormalities, demonstrating that BEM1 is essential for normal growth of both yeast and hyphae. Inducible, FLP-mediated gene deletion provides a powerful approach to generate conditional lethal C. albicans mutants and allows the functional analysis of essential genes.  相似文献   

15.
Candida albicans is a human pathogenic fungus which can undergo a morphological transition from yeast to hyphae in response to a variety of environmental stimuli. We analyzed a C. albicans Asc1 (Absence of growth Suppressor of Cyp1) protein which is entirely composed of seven repeats of the WD domain, and is conserved from fungi to metazoan. Deleting the ASC1 in C. albicans led to a profound defect in hyphal development under hypha-inducing conditions examined. Furthermore, deletion of the ASC1 attenuated virulence of C. albicans in a mouse model of systemic infection. These data strongly suggested that the conserved WD-repeat protein Asc1 is required for morphogenesis and pathogenesis of C. albicans.  相似文献   

16.
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenk?rper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenk?rper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenk?rper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.  相似文献   

17.
Abstract Specificity of peptide transport systems in Candida albicans was studied using as an experimental tool novel anticandidal peptides, containing the N3-4-methoxyfumaroyl- l -2,3-diamino-propanoic acid residue. Studies on cross-resistance and on peptide uptake by spontaneous mutants resistant to toxic peptides, confirmed the multiplicity of peptide permeases in Candida albicans . At least two peptide permeases exist in this microorganism; the first one, specific for di- and tripeptides and the second, for oligopeptides containing 3–6 amino acids. The rate of the tritetra tetra-, penta- and hexapeptide transport in the mycelial form of Candida albicans is about 2-times higher than in the yeast form, while that of dipeptides is markedly reduced.
Tripeptides are proposed as the most efficient carriers for the delivery of 'warhead' amino acids into Candida albicans cells.  相似文献   

18.
Balish, Edward (Syracuse University, Syracuse, N.Y.), and A. W. Phillips. Growth, morphogenesis, and virulence of Candida albicans after oral inoculation in the germ-free and conventional chick. J. Bacteriol. 91:1736-1743. 1966.-The effects of intestinal bacteria on the multiplication, morphogenesis, and infectivity of Candida albicans in the alimentary tract were investigated by comparing results obtained in germ-free and conventional chicks after oral inoculation. This challenge resulted in the establishment of large numbers of the pathogen in the alimentary tract of each group of chicks; these numbers were increased in crop contents from challenged bacteria-free chicks wherein hyphae predominated over the yeast form. These animals also had lesions of the crop epithelium containing numerous hyphae and few yeast-like forms. In contrast, challenged conventional chicks receiving an adequate diet displayed no evidence of infection. Their alimentary tract contained the yeast form of C. albicans; no hyphae were seen. Although we found bacterial inhibition of C. albicans multiplication in the alimentary tract, this in itself did not seem to explain the resistance to intestinal candidiasis in our conventional chicks. We argued that this resistance to infection was due chiefly to the prevention of hyphal development in C. albicans by intestinal bacteria. C. albicans in the gut of our conventional chicks resulted in some increase in numbers of enterococci in contents from the crop. Increased pH values in contents from the gut of germ-free chicks were not clearly related to infection after challenge. The E(h) of the above crop contents were only slightly decreased in the germ-free crop. Thus the E(h) did not appear to be involved in susceptibility to infection. Invasion of the blood stream and kidneys of conventional chicks by the yeast form of C. albicans occurred in challenged animals receiving a purified diet which had been radiation-sterilized and stored for 6 months at room temperature (25 C). Their growth rate decreased and they became moribund; no hyphae were observed in tissues or intestine of these animals. Challenged bacteria-free chicks receiving the same diet were resistant to the above invasion, although they had crop lesions containing hyphae as described. The resistance of these chicks to systemic invasion was attributed to absence of intestinal bacteria competing for low levels of vitamins in the stored diet. Germ-free chicks had decreased levels of serum gamma-globulin which increased after challenge, whereas this value was unchanged in conventional birds after challenge.  相似文献   

19.
The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypic analysis of a methionine-regulated conditional mutant confirmed that Abg1p is involved in endocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号