首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isolated rat hepatocytes, fatty acids inhibited the side chain oxidation, but not the uptake, of exogenously added 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid (THCA). THCA did not inhibit fatty acid oxidation. In liver homogenates, fatty acids inhibited THCA activation to its CoA ester (THC-CoA) and THCA oxidation. THCA did not influence fatty acid activation or oxidation. Comparison of the THC-CoA concentrations present in the incubation mixtures during THCA oxidation, with substrate concentration curves determined for THC-CoA oxidation, indicated that the inhibition of THCA oxidation by fatty acids was at least partly exerted at the activation step. The inhibition of THCA activation by fatty acids was noncompetitive. Palmitoyl-CoA at concentrations found in the incubation mixtures during THCA oxidation in the presence of palmitate inhibited THC-CoA oxidation, but not sufficiently to fully explain the fatty acid-induced inhibition of THCA oxidation. The inhibition of THC-CoA oxidation by palmitoyl-CoA did not seem to be competitive. Acyl-CoA oxidase, the first enzyme of peroxisomal beta-oxidation (which catalyzes the side chain oxidation of THCA), was enhanced 15-fold in liver homogenates from clofibrate-treated rats when palmitoyl-CoA was the substrate, but the oxidase activity remained unaltered when THC-CoA was the substrate. In the perfused liver, oleate, infused after a wash-out period of 60 min, markedly inhibited bile acid secretion. The results 1) suggest that fatty acids inhibit THCA metabolism both at the activation step and at the peroxisomal beta-oxidation sequence and that separate enzymes may be involved in both the activation and peroxisomal beta-oxidation of fatty acids and THCA and 2) raise the question whether fatty acids might (indirectly?) affect overall bile acid synthesis via their inhibitory effect on THCA metabolism.  相似文献   

2.
The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.  相似文献   

3.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

4.
The production of hydrogen peroxide by isolated hepatocytes in response to lauric, palmitic and oleic acids, a measurement of peroxisomal fatty acid oxidation, is inhibited by phenothiazines under conditions in which ketone body production, a measurement of mitochondrial fatty acid oxidation, does not reveal inhibition of mitochondrial activity. This novel finding provides a pharmacological tool for the study of peroxisomal function in whole cells. The mechanism of this effect of phenothiazines, detected in hepatocytes from rats treated with a peroxisome proliferation inducing drug, is not yet known.  相似文献   

5.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.  相似文献   

6.
Inhibition of peroxisomal fatty acyl-CoA oxidase by antimycin A.   总被引:1,自引:1,他引:0       下载免费PDF全文
Peroxisomal fatty acyl-CoA oxidase was inhibited by micromolar concentrations of antimycin A, an inhibitor of mitochondrial respiration. The inhibition was observed with all three substrates tested, i.e. palmitoyl-CoA, trihydroxycoprostanoyl-CoA and hexadecanedioyl-CoA. The peroxisomal D-amino acid oxidase was also inhibited by antimycin, but the peroxisomal L-alpha-hydroxyacid oxidase and uric acid oxidase and the mitochondrial monoamine oxidase were not. The degree of inhibition of acyl-CoA oxidase by antimycin was strongly dependent on the amount of cellular protein present in the assay mixture: at a fixed antimycin concentration, the inhibition was gradually lost with increasing protein concentrations. At a fixed cellular protein concentration in the assay mixtures, the mitochondrial oxidation of glutamate or palmitoylcarnitine was inhibited at antimycin concentrations that were much lower than those required for the inhibition of fatty acyl-CoA oxidase. Our results, nevertheless, demonstrate that antimycin A must be used with caution, when it is added to homogenates or subcellular fractions in order to distinguish between mitochondrial and peroxisomal fatty acid oxidation.  相似文献   

7.
Beta-oxidation of carboxylates takes place both in mitochondria and peroxisomes and in each pathway parallel enzymes exist for each conversion step. In order to better define the substrate specificities of these enzymes and in particular the elusive role of peroxisomal MFP-1, hepatocyte cultures from mice with peroxisomal gene knockouts were used to assess the consequences on substrate degradation. Hepatocytes from mice with liver selective elimination of peroxisomes displayed severely impaired oxidation of 2-methylhexadecanoic acid, the bile acid intermediate trihydroxycholestanoic acid (THCA), and tetradecanedioic acid. In contrast, mitochondrial beta-oxidation rates of palmitate were doubled, despite the severely affected inner mitochondrial membrane. As expected, beta-oxidation of the branched chain compounds 2-methylhexadecanoic acid and THCA was reduced in hepatocytes from mice with inactivation of MFP-2. More surprisingly, dicarboxylic fatty acid oxidation was impaired in MFP-1 but not in MFP-2 knockout hepatocytes, indicating that MFP-1 might play more than an obsolete role in peroxisomal beta-oxidation.  相似文献   

8.
The effect of various inhibitors of fatty acid transport and of respiratory chain on palmitate oxidation was investigated in homogenates and mitochondria of rat muscle and homogenates of rat liver and human muscle. Inhibition of fatty acid transport by carnitine omission, malonyl-CoA, tetradecylglycidic acid and mersalyl decreased oxidation more with muscle than with rat liver. Antimycin and KCN decreased markedly palmitate oxidation and caused a larger accumulation of peroxisomal oxidation products. Inhibition of mitochondrial long-chain fatty acid transport decreased accumulation of peroxisomal products in comparison to the control. The effect of malonyl-CoA was dependent on the nutritional state, the pH and the palmitate-albumin ratio with liver homogenates, and only on the latter parameter with muscle homogenates. Effects observed were comparable for rat and human muscle homogenates.  相似文献   

9.
It is well established that medium and long chain (+)-acylcarnitines (i.e. fatty acid esters of the unnatural d-isomer of carnitine) inhibit the oxidation of long chain fatty acids in mammalian tissues by interfering with some component(s) of the mitochondrial carnitine palmitoyltransferase (CPT) system. However, whether their site of action is at the level of CPT I (outer membrane), CPT II (inner membrane), carnitine-acylcarnitine translocase (CACT, inner membrane), or some combination of these elements has never been resolved. We chose to readdress this question using rat liver mitochondria and employing a variety of assays that distinguish between the three enzyme activities. The effect on each of (+)-acetylcarnitine, (+)-hexanoylcarnitine, (+)-octanoylcarnitine, (+)-decanoylcarnitine, and (+)-palmitoylcarnitine was examined. Contrary to longstanding belief, none of these agents was found to impact significantly upon the activity of CPT I or CPT II. Whereas (+)-acetylcarnitine also failed to influence CACT, both (+)-octanoylcarnitine and (+)-palmitoylcarnitine strongly inhibited this enzyme with a similar IC(50) value ( approximately 35 microm) under the assay conditions employed. Remarkably, (+)-decanoylcarnitine was even more potent (IC(50) approximately 5 microm), whereas (+)-hexanoylcarnitine was far less potent (IC(50) >200 microm). These findings resolve a 35-year-old puzzle by establishing unambiguously that medium and long chain (+)-acylcarnitines suppress mitochondrial fatty acid transport solely through the inhibition of the CACT component. They also reveal a surprising rank order of potency among the various (+)-acylcarnitines in this respect and should prove useful in the design of future experiments in which selective blockade of CACT is desired.  相似文献   

10.
Peroxisomal (acyl-CoA oxidase and peroxisomal dihydroxyacetone-phosphate acyltransferase) and extraperoxisomal (mitochondrial fatty acid oxidation, extraperoxisomal dihydroxyacetone-phosphate acyltransferase, mitochondrial and microsomal glycerophosphate acyltransferases) lipid-metabolizing enzymes were measured in homogenates from rat liver and from seven extrahepatic tissues. Except for jejunal mucosa and kidney, extrahepatic tissues contained very little acyl-CoA oxidase activity. Peroxisomal dihydroxyacetone-phosphate acyltransferase, taken as the activity that was not inhibited by 5 mM-glycerol 3-phosphate, was present in all tissues examined, and its specific activity in liver and extrahepatic tissues was roughly of the same order of magnitude. Clofibrate treatment increased the activity of acyl-CoA oxidase in liver, and to a smaller extent also in kidney, but did not influence the activity of peroxisomal dihydroxyacetone-phosphate acyltransferase. Comparison of the activities of peroxisomal and extraperoxisomal lipid-metabolizing enzymes in extrahepatic tissues and in liver, an organ in which the contribution of peroxisomes to fatty acid oxidation and to glycerolipid synthesis has been estimated previously, suggests that, as in liver, peroxisomal long-chain fatty acid oxidation is of minor quantitative importance in extrahepatic tissues, but that in these tissues (micro)-peroxisomes are responsible for most of the dihydroxyacetone phosphate acylation and, consequently, for initiating ether glycerolipid synthesis.  相似文献   

11.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

12.
Male rats were fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. Total and peroxisomal oxidation rates of palmitic and arachidonic acid were increased in homogenates of liver and kidney after DEHP administration. The relative peroxisomal contribution to the total oxidation was only higher in liver. The activities of acyl-CoA oxidase and carnitine palmitoyltransferase were also higher in both tissues. Immunoblots showed that the increase of fatty acid oxidation was associated with a higher concentration of enzymes of peroxisomal and mitochondrial beta-oxidation. DEHP did not change total and peroxisomal fatty acid oxidation and activity of carnitine palmitoyltransferase of homogenates of heart and skeletal muscle. The cause for the tissue-specific response is discussed.  相似文献   

13.
A previous study [Berry, M. N., Gregory, R. B., Grivell, A. R. & Wallace, P. G. (1983) Eur. J. Biochem. 131, 215-222] suggested that long-chain fatty acid (palmitate) oxidation by hepatocytes was less sensitive than short-chain fatty acid (hexanoate) oxidation to inhibition by a given concentration of antimycin. Re-examination of this phenomenon showed that palmitate oxidation by hepatocytes could be depressed by antimycin to the same degree as other NAD+-linked substrates, only if the concentration of the inhibitor was raised 2-4-fold. The presence of palmitate also reduced the sensitivity to antimycin of hepatocytes metabolizing lactate or pyruvate. Over the range of fatty acids tested, butyrate (C4) to stearate (C18), only long-chain (greater than C10) fatty acids endowed cells with decreased sensitivity towards antimycin. 2-Bromopalmitate, a non-metabolizable fatty acid, and inhibitor of fatty acid oxidation, also decreased the inhibitory effect of antimycin in cells, suggesting that long-chain fatty acids per se rather than their metabolites, reverse the inhibition by antimycin. Moreover, another inhibitor of fatty acid oxidation, 2-tetradecylglycidic acid, did not diminish the effects of palmitate. Succinate oxidation in isolated mitochondria that had been inhibited by a low concentration of antimycin could be restored by subsequent addition of palmitate or other long-chain fatty acids such as dodecanoate, tetradecanoate and oleate under conditions where fatty acid oxidation was prevented. 2-Bromopalmitate, likewise partially restored antimycin-depressed succinate oxidation. This amelioration of antimycin inhibition was counteracted by the addition of more antimycin and was not seen upon addition of defatted bovine serum albumin, palmitoylcarnitine or octanoate. The total amount of antimycin bound to mitochondria was not affected by the presence of palmitate. The data suggest that long-chain fatty acids are able to interact with the mitochondrial inner membrane in a manner which can relieve the inhibitory effect of antimycin, whether the antimycin is added to the cell or mitochondrial suspension before or after fatty acid addition.  相似文献   

14.
Feeding male rats a high cal% partially hydrogenated fish oil diet induced morphological and biochemical changes in hepatocytes at the mitochondrial and peroxisomal level. At the mitochondrial level, formation of megamitochondria was related to the development of an essential fatty acid deficiency, as measured by a high 20:3/20:4 fatty acid ratio. These mitochondrial changes were fully prevented by adding linoleic acid to the partially hydrogenated fish oil diet. The megamitochondria revealed a normal specific content of respiratory chain pigments, normal specific respiratory rates and a normal energy coupling. At the peroxisomal level, feeding of the partially hydrogenated fish oil diet caused a considerable proliferation, which was unrelated to essential fatty acid deficiency. The total number of peroxisomes increased 1.9-fold, and 2.6-fold in the presence of added linoleic acid. Essential fatty acid deficiency seemed to result in an inhibition of peroxisomal biogenesis. It was concluded that the induction of megamitochondria by partially hydrogenated fish oil was fully attributable to essential fatty acid deficiency, whereas peroxisomal proliferation must be attributed to other factors in the diet.  相似文献   

15.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

16.
To determine whether the accumulation of liver triglyceride in Reye's syndrome could be due to a block in beta-oxidation of the fatty acids, the ability of Reye's and control liver homogenates from samples obtained at autopsy to oxidize fatty acids was examined. Total fatty acid oxidation as measured by oxidation of [1-14C]oleoyl CoA, which mostly represents mitochondrial activity, was comparable between the groups. Peroxisomal fatty acid oxidation was, likewise, similar despite the reported increase in the numbers and sizes of these organelles. This disparity could not be explained by an artifactual dilution of product by accumulated endogenous substrate. Inference is made that active peroxisomal beta-oxidation may contribute to the increased short chain fatty CoA content of liver which was reported earlier.  相似文献   

17.
The interactions of 1-5 mM valproic acid with the hepatic fatty acid oxidation are here described. Valproic acid was not substrate for hepatic peroxisomal fatty acid oxidation. Its activation outside the mitochondrial matrix compartment was poor when compared to that of octanoic acid, a fatty acid containing the same number of carbones. Valproic acid did not inhibit the fatty acyl-CoA oxidase nor the cyanide-insensitive acyl-CoA oxidation. Valproic acid inhibited the mitochondrial oxidations of both long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs. Valproic acid prevented the oxidation by coupled mitochondria of decanoic and 10-hydroxydecanoic acids. Both butyric and 4-hydroxybutyric acids were oxidized by coupled mitochondria. These activities were abolished by preincubating the enzyme source with valproic acid. Administration to rats of 0.5% (w/w)- or 1% (w/w)-valproate containing diets were efficient in producing increased liver peroxisomal population and beta-oxidation. Preliminary investigations on the effects of valproic acid on mitochondrial fatty acid oxidation as a function of the animal used for the experiments pointed out an association of the protection of the mitochondrial process against the toxicity of the drug with enhanced carnitine acyltransferase and acyl-CoA hydrolase activities.  相似文献   

18.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

19.
Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty (fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO(2) production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished approximately 50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO(2) production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO(2) unaltered). Alternatively, only CO(2) was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.  相似文献   

20.
Although beta-oxidation of fatty acids occurs in both peroxisomes and mitochondria, beta-oxidizing enzymes in these organelles have distinct differences in their specifity and sensitivity to inhibitors. In this study, the effects of the phosphodiesterase inhibitor enoximone on hepatic peroxisomal and mitochondrial beta-oxidation were investigated. In liver homogenates from control rats, cyanide-insensitive peroxisomal beta-oxidation of palmitoyl-CoA was inhibited progressively by increasing concentrations of enoximone. Similar results were obtained in liver homogenates from rats pretreated with the known peroxisomal proliferator diethylhexylphthalate. In contrast, mitochondrial beta-oxidation of palmitoyl-CoA was not inhibited by enoximone. These data show that enoximone selectively inhibits basal as well as induced peroxisomal, but not mitochondrial, beta-oxidation of the CoA thioester of long-chain fatty acids. The availability of specific inhibitors of peroxisomal beta-oxidation should prove useful in elucidating regulatory mechanisms operative in this pathway in normal as well as in proliferated peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号