首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To further understand the roles played by the essential phosphoinositide PI4,5P(2), we have used a synthetic lethal analysis, which systematically combined the mss4(ts) mutation, partially defective in PI4P 5-kinase activity, with each of approximately 4700 deletion mutations. This genomic screening technique uncovered numerous new candidate effectors and regulators of PI4,5P(2) in yeast. In particular, we identified Slm1 (Yil105c), a previously uncharacterized PI4,5P(2) binding protein. Like Mss4, Slm1 and its homolog Slm2 (Ynl047c) were required for actin cytoskeleton polarization and viability. Co-immunoprecipitation experiments revealed that Slm1 interacts with a component of TORC2, a Tor2 kinase-containing complex, which also regulates the actin cytoskeleton. Consistent with these findings, phosphorylation of Slm1 and Slm2 was dependent on TORC2 protein kinase activity, both in vivo and in vitro, and Slm1 localization required both PI4,5P(2) and functional TORC2. Together, these data suggest that Slm1 and Slm2 function downstream of PI4,5P(2) and the TORC2 kinase pathway to control actin cytoskeleton organization.  相似文献   

2.
Production of the essential phospholipid PI4P at the Golgi by the Pik1 kinase is required for protein secretion, while a distinct pool of PI4P generated by the Stt4 kinase is critical for normal actin cytoskeleton organization. We identify a transmembrane protein that stabilizes Stt4 at the plasma membrane where it directs synthesis of PI4P, which is required for activation of the Rho1/Pkc1-mediated MAP kinase cascade. Inactivation of Stt4 or the PI4P 5-kinase Mss4 results in mislocalization of the Rho-GTPase GEF Rom2. Rom2 binds PI4,5P(2) through its PH domain and represents the first identified effector in the Stt4-Mss4 pathway. Based on these results, we propose that Stt4-Mss4 generates PI4,5P(2) at the plasma membrane, required to recruit/activate effector proteins such as Rom2.  相似文献   

3.
Membrane lipids have been implicated in many critical cellular processes, yet little is known about the role of asymmetric lipid distribution in cell morphogenesis. The phosphoinositide bis-phosphate PI(4,5)P(2) is essential for polarized growth in a range of organisms. Although an asymmetric distribution of this phospholipid has been observed in some cells, long-range gradients of PI(4,5)P(2) have not been observed. Here, we show that in the human pathogenic fungus Candida albicans a steep, long-range gradient of PI(4,5)P(2) occurs concomitant with emergence of the hyphal filament. Both sufficient PI(4)P synthesis and the actin cytoskeleton are necessary for this steep PI(4,5)P(2) gradient. In contrast, neither microtubules nor asymmetrically localized mRNAs are critical. Our results indicate that a gradient of PI(4,5)P(2), crucial for filamentous growth, is generated and maintained by the filament tip-localized PI(4)P-5-kinase Mss4 and clearing of this lipid at the back of the cell. Furthermore, we propose that slow membrane diffusion of PI(4,5)P(2) contributes to the maintenance of such a gradient.  相似文献   

4.
The actin cytoskeleton rapidly depolarizes in yeast secretory (sec) mutants at restrictive temperatures. Thus, an unknown signal conferred upon secretion is necessary for actin polarity and exocytosis. Here, we show that a phosphatidylinositol (PI) transfer protein, Sfh5, and a phosphatidylinositol-4-phosphate 5-kinase, Mss4, facilitate Cdc42 activation to concomitantly regulate both actin and protein trafficking. Defects in Mss4 function led to actin depolarization, an inhibition of secretion, reduced levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in membranes, mislocalization of a pleckstrin homology domain fused to green fluorescent protein, and the mislocalization of Cdc42. Similar defects were observed in sec, myo2-66, and cdc42-6 mutants at elevated temperatures and were rescued by the overexpression of MSS4. Likewise, the overexpression of SFH5 or CDC42 could ameliorate these defects in many sec mutants, most notably in sec3Δ cells, indicating that Cdc42-mediated effects upon actin and secretion do not necessitate Sec3 function. Moreover, mutation of the residues involved in PI binding in Sfh5 led to the mislocalization and loss of function of both Sfh5 and Cdc42. Based upon these findings, we propose that the exocytic signal involves PI delivery to the PI kinases (i.e., Mss4) by Sfh5, generation of PI(4,5)P2, and PI(4,5)P2-dependent regulation of Cdc42 and the actin cytoskeleton.  相似文献   

5.
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.  相似文献   

6.
The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.  相似文献   

7.
In osteoclasts, polyphosphoinositides such as phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) are produced in response to integrin alphavbeta3 signaling and they have a critical role in actin cytoskeleton remodeling. The levels of PI(4,5)P2 and PI(3,4,5)P3 are regulated by Rho GTPase through the activation of phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase) and phospatidylinositol 3-kinase (PI3 kinase), respectively. Interaction of PI(4,5)P2 with gelsolin and Wiscott-Aldrich syndrome protein (WASP) is critical for podosome assembly/disassembly and actin ring formation in osteoclasts. Interaction of PI(3,4,5)P3 with gelsolin functions in orchestrating the podosome signaling complex consisting of several key signaling molecules. Gelsolin deficiency has been shown to block podosome assembly and motility in mouse osteoclasts. However, these osteoclasts are able to form a WASP-containing actin ring and retain their resorptive function. The TAT-mediated delivery of gelsolin phosphoinositide-binding domains into osteoclasts resulted in production of podosome clusters and disruption of actin ring formation. Hence, these osteoclasts were hypomotile and less resorptive. Our observations suggest that both PI(4,5)P2 and PI(3,4,5)P3 are involved in regulating osteoclast functions through modulation of severing, capping, and nucleating functions of actin-binding proteins.  相似文献   

8.
Type I phosphatidylinositol 4-phosphate (PI(4)P) 5-kinases (PIP5Ks) catalyze the synthesis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), an essential lipid molecule involved in various cellular processes such as regulation of actin cytoskeleton and membrane traffic. The protein localizes to the plasma membrane where its activity has been shown to be regulated by small GTPase ARFs and/or phosphatidic acid. Deletion analysis of amino- or carboxy-terminal sequences of PIP5Kgamma fused with EGFP demonstrated that the presence of central kinase homology domain (KHD), a 380 amino acid-long region highly conserved among PIP5K family, was necessary and sufficient for the plasma membrane localization of PIP5Kgamma. Particularly, the dibasic Arg-Lys sequence located at the carboxy-terminal end of KHD was shown to be crucial for the plasma membrane targeting of PIP5Kgamma, since the deletion or charge-reversal mutation of this dibasic sequence resulted in the mislocalization of the protein to the cytoplasm. Mislocalized mutants also failed to complement the temperature-sensitive growth of Saccharomyces cerevisiae mss4-1 mutant defective in PIP5K function. The presence of dibasic residues at the C-terminal end of KHD was conserved among mammalian as well as invertebrate PIP5K family members, but not in the type II PIPKs that are not targeted to the plasma membrane, suggesting that the conserved dibasic motif provides a mechanism essential for the proper localization and cellular function of PIP5Ks.  相似文献   

9.
Caroni P 《The EMBO journal》2001,20(16):4332-4336
The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.  相似文献   

10.
During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2 is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2 is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2 formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2 synthesis.  相似文献   

11.
The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P(2)-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P(2)-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P(2), Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P(2) in a Ca(2+)/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P(2)-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.  相似文献   

12.
Talin is a structural component of focal adhesion sites and is thought to be engaged in multiple protein interactions at the cytoplasmic face of cell/matrix contacts. Talin is a major link between integrin and the actin cytoskeleton and was shown to play an important role in focal adhesion assembly. Consistent with the view that talin must be activated at these sites, we found that phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) bound to talin in cells in suspension or at early stages of adhesion, respectively. When phosphoinositides were associated with phospholipid bilayer, talin/phosphoinositide association was restricted to PI4,5P(2). This association led to a conformational change of the protein. Moreover, the interaction between integrin and talin was greatly enhanced by PI4,5P(2)-induced talin activation. Finally, sequestration of PI4,5P(2) by a specific pleckstrin homology domain confirms that PI4,5P(2) is necessary for proper membrane localization of talin and that this localization is essential for the maintenance of focal adhesions. Our results support a model in which PI4,5P(2) exposes the integrin-binding site on talin. We propose that PI4,5P(2)-dependent signaling modulates assembly of focal adhesions by regulating integrin-talin complexes. These results demonstrate that activation of the integrin-binding activity of talin requires not only integrin engagement to the extracellular matrix but also the binding of PI4,5P(2) to talin, suggesting a possible role of lipid metabolism in organizing the sequential assembly of focal adhesion components.  相似文献   

13.
Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase   总被引:14,自引:0,他引:14  
The serine/threonine kinase Rho-kinase was recently identified as a downstream effector of the small GTPase Rho, mediating effects of Rho on the actin cytoskeleton. Also phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) has been implicated in the regulation of actin polymerization. As the synthesis of PI(4,5)P(2) has been suggested to be affected by Rho proteins, we investigated whether Rho-kinase is involved in the control of PI(4,5)P(2) levels. Overexpression of RhoA in HEK-293 cells increased phosphatidylinositol 4-phosphate (PI4P) 5-kinase activity and concomitantly enhanced cellular PI(4,5)P(2) levels, whereas overexpression of the Rho-inactivating C3 transferase decreased both PI4P 5-kinase activity and PI(4,5)P(2) levels. These effects of RhoA could be mimicked by overexpression of wild-type Rho-kinase and of the constitutively active catalytic domain of Rho-kinase, Rho-kinase-CAT. In contrast, a kinase-deficient mutant of Rho-kinase had no effect on PI4P 5-kinase activity. Importantly, the increase in PI4P 5-kinase activity and PI(4,5)P(2) levels by wild-type Rho-kinase, but not by Rho-kinase-CAT, was completely prevented by coexpression of C3 transferase, indicating that the effect of Rho-kinase was under the control of endogenous Rho. In cell lysates, addition of recombinant RhoA and Rho-kinase-CAT stimulated PI4P 5-kinase activity. Finally, the increase in PI(4,5)P(2) levels induced by both Rho-kinase-CAT and RhoA was reversed by the Rho-kinase inhibitor HA-1077. Our data suggest that Rho-kinase is involved in the Rho-controlled synthesis of PI(4,5)P(2) by PI4P 5-kinase.  相似文献   

14.
Phg2 is a ser/thr kinase involved in adhesion, motility, actin cytoskeleton dynamics, and phagocytosis in Dictyostelium cells. In a search for Phg2 domains required for its localization to the plasma membrane, we identified a new domain interacting with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 4-phosphate (PI(4)P) membrane phosphoinositides. Deletion of this domain prevented membrane recruitment of Phg2 and proper function of the protein in the phagocytic process. Moreover, the overexpression of this PI(4,5)P2-binding domain specifically had a dominant-negative effect by inhibiting phagocytosis. Therefore, plasma membrane recruitment of Phg2 is essential for its function. The PI(4,5)P2-binding domain fused to GFP (green fluorescent protein) (GFP-Nt-Phg2) was also used to monitor the dynamics of PI(4,5)P2 during macropinocytosis and phagocytosis. GFP-Nt-Phg2 disappeared from macropinosomes immediately after their closure. During phagocytosis, PI(4,5)P2 disappeared even before the sealing of phagosomes as it was already observed in mammalian cells. Together these results demonstrate that PI(4,5)P2 metabolism regulates the dynamics and the function of Phg2.  相似文献   

15.
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P(2)]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIbeta), and we find that production of eEF1A2-dependent PI(4,5)P(2) and generation of filopodia require PI4KIIIbeta. Furthermore, PI4KIIIbeta is itself capable of activating both the production of PI(4,5)P(2) and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIbeta, and activated PI4KIIIbeta stimulates production of PI(4,5)P(2) and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIbeta in the control of PI(4,5)P(2) signaling and actin remodeling.  相似文献   

16.
Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.  相似文献   

17.
Phosphatidylinositol 4,5 bisphosphate (PIP(2)) is widely implicated in cytoskeleton regulation, but the mechanisms by which PIP(2) effect cytoskeletal changes are not defined. We used recombinant adenovirus to infect CV1 cells with the mouse type I phosphatidylinositol phosphate 5-kinase alpha (PIP5KI), and identified the players that modulate the cytoskeleton in response to PIP(2) signaling. PIP5KI overexpression increased PIP(2) and reduced phosphatidylinositol 4 phosphate (PI4P) levels. It promoted robust stress-fiber formation in CV1 cells and blocked PDGF-induced membrane ruffling and nucleated actin assembly. Y-27632, a Rho-dependent serine/threonine protein kinase (ROCK) inhibitor, blocked stress-fiber formation and inhibited PIP(2) and PI4P synthesis in cells. However, Y-27632 had no effect on PIP(2) synthesis in lysates, although it inhibited PI4P synthesis. Thus, ROCK may regulate PIP(2) synthesis by controlling PI4P availability. PIP5KI overexpression decreased gelsolin, profilin, and capping protein binding to actin and increased that of ezrin. These changes can potentially account for the increased stress fiber and nonruffling phenotype. Our results establish the physiological role of PIP(2) in cytoskeletal regulation, clarify the relation between Rho, ROCK, and PIP(2) in the activation of stress-fiber formation, and identify the key players that modulate the actin cytoskeleton in response to PIP(2).  相似文献   

18.
Phosphoinositide plays a critical role not only in generating second messengers, such as inositol 1,4,5-trisphosphate and diacylglycerol, but also in modulating a variety of cellular functions including cytoskeletal organization and membrane trafficking. Many inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their availability. For example, local concentration changes in phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganization of actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, leading to de novo actin polymerization. PI(4,5)P(2) also plays a key role in membrane trafficking processes. In endocytosis, PI(4,5)P(2) targets clathrin-associated proteins to endocytic vesicles, leading to clathrin-coated pit formation. On the contrary, PI(4,5)P(2) must be dephosphorylated when they shed clathrin coats to fuse endosome. Thus, through regulating actin cytoskeleton organization and membrane trafficking, phosphoinositides play crucial roles in a variety of cell functions such as growth, polarity, movement, and pattern formation.  相似文献   

19.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) plays a central role in regulating the actin cytoskeleton as a substrate for phosphoinositide 3-kinase and phospholipase C as well as by binding directly to proteins that control the processes of actin monomer sequestration, filament severing, capping, nucleation, cross-linking, and bundling (Ma, L., Cantley, L. C., Janmey, P. A., and Kirschner, M. W. (1998) J. Cell Biol. 140, 1125-1136; Hinchliffe, K. (2000) Curr. Biol. 10, R104-R1051). Three related phosphatidylinositol 4-phosphate 5-kinases (PI(4)P 5-kinases) have been identified in mammalian cells (types Ialpha, Ibeta, and Igamma) and appear to play distinct roles in actin remodeling. Here we have identified a fourth member of this family by searching the human genome and EST data bases. This new protein, which we have designated phosphatidylinositol phosphate kinase homolog (PIPKH), is expressed at relatively high levels in brain and testis. Immunoprecipitates of PIPKH expressed in mammalian cells contain PI(4)P 5-kinase activity, but this activity is not affected by mutations in residues that inactivate other type I PI(4)P 5-kinases. We show that the PI(4)P 5-kinase activity in PIPKH immunoprecipitates can be explained by the ability of PIPKH to heterodimerize with other type I PI(4)P 5-kinases. Transfection of 293t cells with PIPKH resulted in >8-fold increase in total phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) without a significant net increase in total PI(4,5)P(2). When coexpressed with PIPKH, green fluorescent protein (GFP) fusion construct of the pleckstrin homology domain from Bruton's tyrosine kinase (GFP-BTK-PH) localized in intracellular vesicular structures, suggesting an unusual intracellular site of PI(3,4,5)P(3) production. Finally, expression of PIPKH induced the reorganization of actin from predominantly stress fibers to predominantly foci and comets similar to those observed previously in cells infected with the intracellular pathogen Listeria or transfected with recombinant PIPKIalpha. These results suggest that PIPKH acts as a scaffold to localize and regulate type I PI(4)P 5-kinases and the synthesis of PI(3,4,5)P(3).  相似文献   

20.
A role for talin in presynaptic function   总被引:5,自引:0,他引:5  
Talin, an adaptor between integrin and the actin cytoskeleton at sites of cell adhesion, was recently found to be present at neuronal synapses, where its function remains unknown. Talin interacts with phosphatidylinositol-(4)-phosphate 5-kinase type Igamma, the major phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]-synthesizing enzyme in brain. To gain insight into the synaptic role of talin, we microinjected into the large lamprey axons reagents that compete the talin-PIP kinase interaction and then examined their effects on synaptic structure. A dramatic decrease of synaptic actin and an impairment of clathrin-mediated synaptic vesicle endocytosis were observed. The endocytic defect included an accumulation of clathrin-coated pits with wide necks, as previously observed after perturbing actin at these synapses. Thus, the interaction of PIP kinase with talin in presynaptic compartments provides a mechanism to coordinate PI(4,5)P(2) synthesis, actin dynamics, and endocytosis, and further supports a functional link between actin and clathrin-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号