首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.  相似文献   

2.
Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Peptide growth factors from the fibroblast growth factor (FGF) and transforming growth factor-beta families are likely regulators of mesoderm formation in the early Xenopus embryo. Although basic FGF is found in the Xenopus embryo at the correct time and at sufficient concentrations to suggest that it is the FGF-type inducer, the lack of a secretory signal sequence in the basic FGF peptide has raised questions as to its role in the inductive process. We show here that Xenopus basic FGF can ectopically induce mesoderm when translated from injected synthetic RNA within the cells of a Xenopus embryo. Basic FGF produced in this manner is able to induce the formation of both dorsal and ventral mesoderm with the type of mesoderm formed dependent on the inherent dorsal-ventral polarity of the animal hemisphere. Surprisingly, although Xenopus basic FGF produced from the injected mRNA has a potent mesodermalizing effect on animal hemisphere cells, virtually no phenotypic effect is observed with intact embryos. These results suggest that the role of Xenopus basic FGF is to specify the size of the marginal zone, and synergistically with a dorsally localized prepatterning signal, to initially establish the dorsal-ventral axis of the mesoderm.  相似文献   

4.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

5.

Background

Embryonic stem (ES) cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF) signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear.

Methodology/Principal Findings

Using a culture model based on early primitive ectoderm-like (EPL) cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited.

Conclusions/Significance

FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.  相似文献   

6.
When Xenopus embryos are cultured in calcium- and magnesium-free medium (CMFM), the blastomeres lose adhesion but continue dividing to form a loose heap of cells. If divalent cations are restored at the early gastrula stage the cells re-adhere and eventually form muscle (a mesodermal cell type) as well as epidermis. If, however, the cells are dispersed during culture in CMFM, muscle does not form following reaggregation although epidermis does. This suggests that culturing blastomeres in a heap allows the transmission of mesoderm-induction signals from cell to cell while dispersion effectively dilutes the signal. In this paper, we have attempted to substitute for cell proximity by culturing dispersed blastomeres in XTC mesoderm-inducing factor (MIF). We find that dispersed cells do not respond to XTC-MIF by forming mesodermal cell types after reaggregation, but the factor does inhibit epidermal differentiation. One interpretation of this observation is that an early stage in mesoderm induction is the suppression of epidermal differentiation and that formation of mesoderm may require contact-mediated signals that are produced in response to XTC-MIF. We have gone on to study the suppression of epidermal differentiation in more detail. We find that this is a dose-dependent phenomenon that can occur in single cells in the absence of cell division. Animal pole blastomeres become more difficult to divert from epidermal differentiation at later stages of development and by stage 12 they are 'determined' to this fate. Fibroblast growth factor (FGF) also suppresses epidermal differentiation in isolated animal pole blastomeres and transforming growth factor-beta 1 acts synergistically with FGF in doing so.  相似文献   

7.
8.
Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.  相似文献   

9.
Little is known about the origin of hematopoietic cells in mammalian development. Here we view the problem in terms of the induction and patterning of the mesoderm, using Xenopus embryos as a model. In amphibia, mesoderm arises through an inductive interaction in which cells of the vegetal hemisphere act on overlying equatorial cells. Activin and FGF are two candidates for the mesoderm-inducing signal, with recent work showing that these factors are necessary for formation of different regions of the mesoderm and that different concentrations of factors induce different cell types. We discuss to what extent these observations apply to mammals.  相似文献   

10.
Fibroblast growth factor (FGF) signalling has been implicated in the generation of mesoderm and neural fates in chordate embryos including ascidians and vertebrates. In Ciona, FGF9/16/20 has been implicated in both of these processes. However, in FGF9/16/20 knockdown embryos, notochord fate recovers during later development. It is thus not clear if FGF signalling is an essential requirement for notochord specification in Ciona embryos. We show that FGF-MEK-ERK signals act during two distinct phases to establish notochord fate. During the first phase, FGF signalling is required during an asymmetric cell division to promote notochord at the expense of neural identity. Consistently, ERK1/2 is specifically activated in the notochord precursors following this cell division. Sustained activation of ERK1/2 is then required to maintain notochord fate. We demonstrate that FGF9/16/20 acts solely during the initial induction step and that, subsequently, FGF8/17/18 together with FGF9/16/20 is involved in the following maintenance step. These results together with others' show that the formation of a large part of the mesoderm cell types in ascidian larvae is dependent on signalling events involving FGF ligands.  相似文献   

11.
12.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

13.
BACKGROUND INFORMATION: FGF (fibroblast growth factor) signalling is known to be required for many aspects of mesoderm formation and patterning during Xenopus development and has been implicated in regulating genes required for the specification of both blood and skeletal muscle lineages. RESULTS: In the present study, we have specifically knocked down the expression of FGF4 using AMO (antisense morpholino oligonucleotide)-mediated inhibition and demonstrate that FGF4 acts in the dorsal marginal zone to restrict blood development and promote the development of skeletal muscle. In addition, we used a drug inhibitor of FGF signalling and an inducible form of FGFR1 (FGF receptor 1) to identify a period of competence during late blastula and gastrula stages when FGF signalling acts to regulate blood versus muscle specification. Notably, we found that it is the dorsal activity of FGF that is required to restrict the expression of SCL (stem cell leukaemia) to the ventral blood island. CONCLUSIONS: Our data indicate that FGF4 is a key organizer-derived signal involved in the process of dorsoventral patterning of the mesoderm.  相似文献   

14.
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.  相似文献   

15.
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.  相似文献   

16.
17.
18.
Vertebrate gastrulation requires coordination of mesoderm specification with morphogenetic movements. While both of these processes require FGF signaling, it is not known how mesoderm specification and cell movements are coordinated during gastrulation. The related Sprouty and Spred protein families are recently discovered regulators of receptor tyrosine kinase signaling. We identified two genes for each family in Xenopus tropicalis: Xtsprouty1, Xtsprouty2, Xtspred1, and Xtspred2. In gain- and loss-of-function experiments we show that XtSprouty and XtSpred proteins modulate different signaling pathways downstream of the FGF receptor (FGFR), and consequently different developmental processes. Notably, XtSproutys inhibit morphogenesis and Ca(2+) and PKCdelta signaling, leaving MAPK activation and mesoderm specification intact. In contrast, XtSpreds inhibit MAPK activation and mesoderm specification, with little effect on Ca(2+) or PKCdelta signaling. These differences, combined with the timing of their developmental expression, suggest a mechanism to switch FGFR signal interpretation to coordinate mesoderm formation and cell movements during gastrulation.  相似文献   

19.
20.
Fibroblast growth factor (FGF) is established as an initiator of signaling events critical for neurogenesis and mesoderm formation during early Xenopus embryogenesis. However, less is known about the role FGF signaling plays in endoderm specification. Here, we show for the first time that endoderm-specific genes are induced when FGF signaling is blocked in animal cap explants. This block of FGF signaling is also responsible for a significant enhancement of endodermal gene expression in animal cap explants that are injected with a dominant-negative BMP-4 receptor (DNBR) RNA or treated with activin, however, neural and mesoderm gene expression is diminished. Consistent with these results, the injection of dominant-negative FGF receptor (DNFR) RNA expands endodermal cell fate boundaries while FGF treatment dramatically reduces endoderm in whole embryos. Taken together, these results indicate that inhibition of FGF signaling promotes endoderm formation, whereas the presence of active FGF signaling is necessary for neurogenesis/mesoderm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号