首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out on structural and cytochemical aspectsof the pistil of Sternbergia lutea (L.) KerGawl. The stigmais of the wet papillate type; the papillae are unicellular andare arranged densely around the rim of a funnel-shaped stigma.The stigma exudate is limited and is confined to the bases ofthe papillae and the inner lining of the stigma. The papillaeare smooth in the distal part and are covered with intact cuticle-pelliclelining. The cuticle is disrupted at places towards the baseof the papillae releasing the exudate. The exudate is rich inpectins and other polysaccharides but poor in proteins and lipids.The papillae show dense cytoplasmic profiles with extensiveendoplasmic reticulum (ER), abundant mitochondria, polyribosomesand active dictyosomes. The style is hollow. The stylar cavityis surrounded by two to four layers of glandular cells. In theyoung pistil the canal is lined with a continuous cuticle, butin the mature pistil the cuticle becomes disrupted and the canalis filled with the secretion produced by the cells of the surroundingglandular tissue. Ultrastructurally, the cells of the glandulartissue are very similar to the stigmatic papillae. The innertangential wall of the cells bordering the canal is uniformlythicker than other walls. The secretion in the stylar canal,as well as the intercellular spaces of the glandular tissue,stain intensely for pectins and polysaccharides but poorly forproteins and lipids. Pollen tubes grow through the stylar canal.Structural and cytochemical details of the pistil of Sternbergiaare compared with other hollow-styled systems. Pistil, Sternbergia lutea (L.) Ker-Gawl., stigma and style, structure and cytochemistry  相似文献   

2.
Structural and cytochemical aspects of the pistil and detailsof pollination and pollen-pistil interaction were investigatedin the African oil palm (Elaeis guineensis Jacq.), an importantperennial oil crop. The stigma is trilobed, wet and papillate.The branched papillae are confined to a narrow linear zone oneach stigmatic lobe. Each stigmatic lobe harbours a deep stigmaticgroove, which runs adaxially along the surface. The stigmaticgroove is bordered by a well-defined layer of glandular cells,each of which has a pectinaceous cap on the inner tangentialwall. The style is hollow. The canal cells show thickeningson the inner tangential wall. The stigmatic groove and stylarcanal contain an extracellular matrix secreted by the canalcells which is rich in proteins, acidic polysaccharides andpectins. The canal cells at the base of the style are papillateand loosely fill the stylar canal. The stigma becomes receptivewhen the stigmatic lobes separate, and remains so for 24 h.Pollination is mediated by weevils as well as by the wind. Undernatural conditions the pollination efficiency was 100%. Pollinationinduces additional secretion in the stigmatic groove and stylarcanal. During post-pollination secretion, the pectinaceous capsof the cells lining the stigmatic groove are degraded. Pollengrains germinate on the stigmatic papillae and tubes grow onthe surface of the papillae, entering the stigmatic groove andadvancing along it into the stylar canal to eventually gainaccess to the locules. Pollen tubes are seen in the ovules 18–20h after pollination. Copyright 2001 Annals of Botany Company Arecaceae, Elaeis guineensis, African oil palm, pollination, stigmatic grove, stylar canal, Tenera hybrid, weevil  相似文献   

3.
Summary The stigmas of species inAneilema andCommelina are trifid and comprise elongate papillae. Progressive degeneration of papular cells is observed in stigmas from open flowers and at anthesis papillae may be moribund and collapsed. Fluid emanating from the hollow style flows onto the surface through ruptures in the cuticle at the interpapillar junctions into the interstices at maturity. This secretion stains positively for protein. Stigmas are of the wet type.The cuticle overlying the papillar cells is ridged and at the final stages prior to flowering this cuticle becomes detached from the underlying cellulosic wall. The sub-cuticular space so formed is filled with secretion. InAneilema species detachment of cuticle is at the papillar tip and along the lateral walls. InCommelina species the anticlinal walls of adjacent papillae are strongly attached for much of their length and thus detachment of cuticle is restricted to the papillar tip. The cell wall at the tip in both genera may proliferate forming a rudimentary transfer-cell type wall. The secretion is considered to be produced by the papillar cells. It is PAS positive but fails to stain for protein and in both the light and electron microscopes appears heterogenous.Pollen attachment, hydration, germination and early tube growth are very rapid following self-pollination, the pollen tubes entering the neck of the style within ten minutes of attachment.A unique character combination involving pollen and stigmas in these genera indicates a monophyletic origin.  相似文献   

4.
Transmitting tissue in Ornithogalum is divided into three regions corresponding to classical divisions of the gynoecium: stigma, style, and ovary. The stigma differentiates from epidermal cells of the stylar apex. These cells form the stigmal papillae and have dense cytoplasm with abundant ER and lipid bodies. Papillae have walls with small transfer-ingrowths. At floral receptivity, papillae secrete a small amount of surface exudate. Epidermal cells of the style contain numerous spherosomes and have thin filaments of cytoplasm traversing the central vacuole. The stylar cortex is composed of 3-6 layers of parenchyma cells which contain numerous spherosomes and often have secondary vacuoles. Vascular tissue in the style consists of one collateral bundle in each lobe. Cells of the epidermal layer lining the stylar canal are secretory. They are initially vacuolate but fill progressively with dense cytoplasm as their secretory activity increases. Secretory activity occurs in three phases, each characterized by a particular organelle population and secretory product. At anthesis, the canal is filled with an exudate consisting of carbohydrate, protein, and lipid. In the ovary, the obturator differentiates from cells at the base of the funiculus and the tip of the carpel margins. It forms a pad of tissue which covers most of the former placenta. The obturator is secretory and produces a surface exudate. We believe our observations on Ornithogalum support the hypothesis that all transmitting tissue is of the same morphological origin and that it provides nutritive and chemotropic factors for pollen tube growth.  相似文献   

5.
The canal that traverses the upper part of the style of Trifoliumpratense is derived lysigenously. The core tissue of the veryyoung style consists of elongated cells similar to those ofthe transmitting tissue of solid-style families such as theSolanaceae; as the style matures, these cells separate to formthe canal, which receives secretions both from the core tissueand the inner wall cells. The early secretion of proteins intothe intercellular spaces is associated with the presence ofparamural bodies (lomasomes) in the adjacent cells. In the cellsin the immediate vicinity of the canal, vesicles, probably derivedfrom the Golgi system enlarge during later development and accumulatea protein-carbohydrate content, which is later passed into thecytoplasm where it forms densely packed fibrillar nodules. Withthe dissolution of the cell membranes, this material is passedinto the canal, where it is progressively diluted by continuedingress of water until the cavity reaches its final volume. Leguminosae, Trifolium pratense L., pollen—stigma interaction, self-incompatibility, stylar secretion, protein secretion  相似文献   

6.
Development and Histochemistry of the Pistil of the Grape, Vitis vinifera   总被引:1,自引:0,他引:1  
The development of the grape pistil is followed for a periodof 9 weeks from flower initiation to anthesis. Three phasesof pericarp differentiation are revealed: ring meristem formation;cell proliferation by anticlinal cell divisions; and a maturationphase characterized by periclinal cell division and differentiation.Both the stigma papillae and the transmitting tissue of thestyle originate by periclinal cell divisions. The receptivestigma is of the wet type and comprises many filamentous papillae,each composed of about 20 cells and covered by a loose cuticle.The stigma exudate shows similar cytochemical properties tothe material in the intercellular spaces of the transmittingtissue and is physically continuous with it. After pollinationand coincident with withering of the stigma, a single layerof stylar cells becomes suberized, forming a protective layerof cicatrix. Vitis vinifera, grape, pistil, development, histochemistry  相似文献   

7.
The pollen grains, the pistil, growth of the pollen tube and its pathway are described in Borago officinalis and Heliotropium europaeum. The exine is thick in both taxa but it is covered with dense gemmae in Borago. The intine seems to be thicker and contains more proteins in Borago than in Heliotropium. Starch is very abundant in the latter while it is lacking in the former. The style is hollow in Borago with a stylar canal running from the stigma to the ovary, while in Heliotropium it is broadly cone‐shaped with papillae located at the base of the cone (the “stigmatic ring") and not at the top of the style as usual. In Borago stigmatic papillae are unicellular, skittle‐shaped and have a thick pectocellulosic wall and an equally thick cuticular layer, while in Heliotropium the stigmatic papillae are unicellular, elongated cone‐shaped with a thin pecto‐cellulosic wall and have an apparently reduced cuticular layer. The stigmatic exudate is very abundant on the stigmas of Heliotropium even before anthesis while it is absent on those of Borago except when allo‐pollination occurs. Pollen tube growth has been followed from stigma to ovules in both taxa.  相似文献   

8.
The structure of the gynoecium and pollen tube pathway in unpollinated and pollinated carpels of Asclepias exaltata L. has been characterized. Pollen tubes penetrate a dry-type stigma, grow intercellularly in a core of solid tissue in the upper style, and subsequently traverse a hollow stylar canal to the ovary where they grow across the placental epithelium to the ovule micropyles. The fine structural characteristics of transmitting cells of the solid style, stylar canal, and placental epithelium indicate a secretory function. Extracellular secretions staining positively for proteins, insoluble carbohydrates, and arabinogalactans/arabinogalactan proteins are present in the solid style, hollow stylar canal, ovary, and micropyle. Micropylar exudate is present subtending the extended cuticle of the embryo sac adjacent to the filiform apparatus of the synergids, providing ultrastructural evidence for a secretion arising from the angiosperm embryo sac.  相似文献   

9.
Studies were carried out on structural and cytochemical aspectsof the stigma and style ofVitis vinifera . The stigma is ofthe wet papillate type with a continuous cuticle and pellicle.During the development of the papillae, the cell walls increasein thickness and produce a secretion product constituted oflipids that pass through the wall forming the exudate. The styleis solid with a central core of transmitting tissue which hasconspicuous intercellular spaces that increase remarkably fromthe periphery to the centre where the cuticle is present. Theintercellular spaces, where the pollen tubes grow, contain amatrix that includes polysaccharides, pectic substances andscattered areas of lipidic nature. Cytochemistry; stigma; style; ultrastructure; Vitis vinifera  相似文献   

10.
Summary For this work we have used various microscopical methods (LM, SEM, and TEM) to study pollen tube growth and interaction with the transmitting tisse inStrelitzia reginae, which has an open style. By the use of SEM it was possible to trace the exact route of the pollen tubes in the ovary of this plant and demonstrate that they exclusively follow the outlines of the transmitting tissue. The average rate of pollen tube growth through the style was 1.8 mm h–1. The most significant effect of the pollination was a thickening of the distal wall of the subepithelial cells in the style. A secretion covers the stigma and the ovarian transmitting tissue and fills the stylar canal. This exudate contains lipids, polysaccharides, and proteins.  相似文献   

11.
An ultrastructural investigation of the entire transmitting tract in Trimezia fosteriana (Iridaceae) was undertaken. The transmitting tissue is secretory but transfer cells do not occur at any level. With exception for the stigma papillae, the cells are covered with large amounts of secretory products. The papillae have a thick and ridged cuticle. The cuticle in the rest of the transmitting tract is thin and detached from the cell wall by the secretory products. It is more or less ruptured in the secretory parts of the stigma and ovary. In the stylar canal the major part of the cuticle is continuous and covers the secretory products. The occurence of a large amount of vesicles in the stigma transmitting tissue cells is interpreted as a result of high dictyosome activity. An electron opaque material is produced in the dictyosomes and appears in vesicles and vacuoles but also between the plasma membrane and the cell walls in the stigma. A small amount of such material is present in the cell walls. Corresponding material is also present in the style and the ovary but declines basipetally. Plastids with strongly electron opaque plastoglobules are present at all levels in the transmitting tract.  相似文献   

12.
Structural and cytochemical aspects of the pistil of Tibouchinasemidecandra Cogn. were studied. The stigma is of the wet-papillatetype and is structurally divisible into a papillar zone anda stigmatic zone. The papillar zone consists of loosely arrangedpapillae which are matchstick-shaped, unicellular, and producelipid droplets that remain entrapped below the thick cuticle.The bulk of cell volume is made up of large vacuoles rich intannin. The stigmatic zone consists of layers of secretory cellswith dense cytoplasm, actively secreting dictyosomes and numerousrough endoplasmic reticulum (RER) profiles. Free-flowing lipidexudate, produced by these cells, is initially stored in theintercellular spaces, and subsequently extruded out to coverthe surface. The style is solid with a core of transmittingtissue traversing its whole length. The transmitting tissueconsists of loosely arranged cells with numerous organellesand conspicuous intercellular substance rich in polysaccharidesand pectins. Ultrastructural details indicate that the intercellularsecretion is accompanied with fraying of the wall component.Both the transverse and longitudinal walls contain plasmodesmata.Copyright1995, 1999 Academic Press Cytochemistry, stigma and style, ultrastructure, Tibouchina semidecandra  相似文献   

13.
14.
DULBERGER  R. 《Annals of botany》1987,59(2):203-217
The receptive surface of the stigma in distylous Linum grandiflorumand L. pubescens was studied by electron microscopy and cytochemicaltechniques. In both floral morphs a proteinaceous-lipoidal coatingis present on the papilla surface. In thrum stigmas the cuticleis highly irregular and pitted at the papilla tip. The cuticleis dislodged and torn at anthesis and an osmiophilic secretionproduct is released within a pectinaceous matrix. The secretionproduct stains for proteins and lipids and contributes to adhesionof pollen. In the larger pin papillae the cuticle is wavy, continuous,thicker than in thrum papillae and adjoins the cell wall. Inboth species the surface of the two types of pollen grains iscoated with lipids and protein. A similar behaviour of the male gametophyte is observed in incompatiblepollinations of L. pubescens, L. mucronatum and L. grandiflorum.In intramorph thrum pollinations pollen tubes are arrested withinthe stigma. In intramorph pin pollinations the majority of pollengrains fail to adhere to the stigma. Low permeability to waterin pin papillae, as determined by the neutral red test, maybe a factor preventing imbibition of the few adhering grains.Tubes of the few germinated grains are inhibited inside thestigma. On the part of the stigma, the difference in the major siteof inhibition in the two intramorph incompatible combinationsmay be accounted for by the dissimilar properties of the papillae,i.e. the occurrence of wet thrum stigmas and dry pin stigmas.Functionally, the unusual association of sporophytic incompatibilitywith wet thrum stigmas is attributed to retention of the secretorymaterial on individual papillae. Stigmatic papillae, cuticle, pollen coat, distyly, incompatibility, Linum grandiflorum, L. pubescens, L. mucronatum  相似文献   

15.
Penetration of pollen tubes through stigmatic tissues in Brassica napus L. may involve the release of cell wall modifying enzymes from the pollen tube tip. We examined the expression of a pectin-degrading polygalacturonase (PG) enzyme in unpollinated and early and late pollinated stigmas via immunoblotting and immuno-light microscopy using a PG polyclonal antibody. Immunoblotting analysis indicated that PG enzyme was present at low levels in unpollinated stigmas and at high levels in pollinated stigmas. The level of PG did not detectably increase between early and late pollinated stigmas. Immuno-light microscopy demonstrated that PG enzyme was present in ungerminated pollen grains, stigmatic papillae and in the tip of pollen tubes growing into the papillar wall. This latter evidence suggests that PG enzyme may play an important role in papillar cell wall penetration during pollination although other interpretations of the role of pollen PG should not be discounted. Received: 9 November 2000 / Accepted: 7 December 2000  相似文献   

16.
Exudate production in the pistil of Lilium longiflorum was studiedin relation to pollen tube growth, using scanning electron microscopy(SEM), transmission electron microscopy and light microscopy.In contrast with conventional fixation for SEM, during whichthe exudate of L. longiflorum largely washes away, the exudateremains present through freezing in case of cryo-SEM. Usingthe latter method we observed that exudate production on thestigma and in the style started before anthesis. Just underneaththe stigma the exudate was first accumulated at the top of eachsecretory cell, followed by a merging of those accumulationsas exudate production proceeded. Exudate is also produced bythe placenta. It was however not possible to determine whetherany of this fluid originated from the micropyle. Apart fromthe cell shape and the cuticle present in between the secretorycells, the ultrastructure of the secretory cells covering theplacenta was comparable to those of the stylar canal. The transferwall of the secretory cells of the placenta originated fromfusing Golgi vesicles but the endoplasmic reticulum seemed tohave an important role as well. After pollination the pollen tubes grew across the stigma andentered the style through one of the slits in the three stigmalobes. The pollen tubes grew straight downward through the styleand were covered by exudate. As the pollen tubes approachedthe ovary their growth was restricted to the areas with secretorycells. In the cavity the pollen tubes formed a bundle and theybent from this bundle in between the ovules towards the micropylarside. There they bent again to stay close to the secretory cells.After bud pollination the pollen tube growth was retarded. Laterarriving pollen tubes had a tendency to grow close to the secretorycells of the style, which resulted in a growth between thesecells and preceding pollen tubes. If there was still a littleexudate produced, it resulted in a lifting up of the pollentubes, out of the exudate. The relationship between exudateproduction and pollen tube growth is discussed. Both the speedand the guidance of the pollen tube seemed determined by theproperties of the exudate.Copyright 1994, 1999 Academic Press Cryo-scanning electron microscopy, exudate, Lilium longiflorum, lily, ovary, pollination, pollen tube growth, secretory cell, stigma, style  相似文献   

17.
The capitate stigma of Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Leonard is an intensely folded bilobed structure. The epidermal layer of the stigma consists of non-papillate cells. Before anthesis the epidermis is covered with a cuticle and thin proteinaceous layer. Elongated subepidermal cells constitute the secretory zone. Cell disintegration in the central region of each stigma lobe leads to cavities that become connected to the central cavity in the style. During early anthesis it appears as if the receptive surface of the stigma is confined to the depressions of the stigma surface and to the cleft between the two stigma lobes as the secretory product and pollen grains are mainly confined to these areas. The secretory products of the stigma and style are released during five different stages from prior to anthesis to late anthesis. The stigmatic exudate appears complex and consists of carbohydrates, proteins and lipids. The style has a hollow, lysigenous, fluid-filled canal that is not lined with an epidermal layer or cuticle. The stylar canal is continuous with the opening between the two stigma lobes and provides an open route for the passage of exudate. The stylar exudate is PAS-positive. The dorsal and ventral bundles that supply the style branch in such a way as to almost form a cylinder around the central transmitting tissue and stylar canal. New sieve elements proliferate before anthesis.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 295–304.  相似文献   

18.
Low seed ovule ratios have been observed in natural populations of Polygala vayredae Costa, a narrowly endemic species from the oriental pre-Pyrenees. To evaluate physical and nutritional constraints and pollen tube attrition in this endemic species, stigma and style anatomy, as well as pollen tube development along the pistil were investigated using light and fluorescence microscopy. The structural morphology of the stigmatic region was also examined with scanning electron microscopy. Pollen grains that reached the stigmatic papillae came into contact with a lipid-rich exudate and germinated easily. Although a large number of pollen grains reach the stigmatic papillae, few pollen tubes were able to grow into the style towards the ovary. The style was hollow, with the stylar channel beginning a few cells below the stigmatic papillae. Initially, the stylar channel area was small compared to other levels of the style, and was surrounded by lipid-rich, highly metabolic active cells. Furthermore, lipid-rich mucilage was detected inside the stylar channel. At subsequent style levels towards the ovary, no major reserves were detected histochemically. The reduced intercellular spaces below the stigmatic papillae and the reduced area of the stylar channel at its commencement are suggested to physically constrain the number of pollen tubes that can develop. In subsequent levels of the style, the stylar channel could physically support a larger number of pollen tubes, but the lack of nutritional reserves cannot be disregarded as a cause of pollen tube attrition. Finally, the number of pollen tubes entering the ovary was greater than the number of ovules, suggesting that interactions occurring at this level play a major role in the final reproductive outcome in this species.  相似文献   

19.
The development and cytochemical features of the stigma andstyle have been investigated in Sugar apple, Annona squamosaL., using light and electron microscopy. The pistil is a syncarpwith an open stylar canal. Papillae of epidermal origin lineboth the surface of the stigma and the inner face of the stylarcanal. The papillae contain organelles characteristic of secretorycells with a highly thickened cellulosic wall. The wall is multi-layered,the zones differing in their microfibrillar stacking and orientation.The stigma is of the ‘wet’ type and the surfaceexudate is heterogeneous in microscopic appearance and reactscytochemically for proteins, carbohydrates and lipids. The surfacecuticle undergoes dissolution prior to anthesis. A secretionalso appears in the thickened middle lamella of the sub-epidermalcell layer which reacts cytochemically for pectinaceous acidicpolysaccharides. Esterase activity of papillae is indicative of the receptiveareas, and it is also related to the onset of receptivity. Acidphosphatase activity is intense in the sub-epidermal cell layerswhich probably reflects their secretory activity. Pollinationtriggers a copious flow of secretion onto the stigma surfacewhich engulfs the pollen grains. It appears that most of theacidic polysaccharides of this secretion come from the middlelamella of the sub-epidermal cell layer. Compatible pollen tubes have no apparent barriers to overcomeon their route to the embryo sac and the inherent protogynousdichogamy seems to control the acceptance or rejection of compatiblepollen. Annona squamosa L., sugar apple, stigma, style, secretions  相似文献   

20.
Self-incompatibility in Brassica oleracea is now viewed as a cellular interaction between pollen and the papillar cells of the stigma surface. In this species, the inhibition of self-pollen occurs at the stigma surface under the influence of S-locus specific glycoproteins (SLSG). We used antibodies specific for a protein epitope of SLSG to study the subcellular distribution of these molecules in the stigmatic papillae. The antibodies have uncovered an interesting epitope polymorphism in SLSG encoded by subsets of S-alleles, thus providing us with useful genetic controls to directly verify the specificity of the immunolocalization data. Examination of thin sections of Brassica stigmas following indirect immunogold labeling showed that SLSG accumulate in the papillar cell wall, at the site where inhibition of self-pollen tube development has been shown to occur. In addition, the absence of gold particles over the papillar cell walls in the immature stigmas of very young buds, and the intense labeling of these walls in the stigmas of mature buds and open flowers, correlates well with the acquisition of the self-incompatibility response by the developing stigma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号