首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
During the adenovirus infectious cycle, the early proteins E4orf6 and E1B55K are known to perform several functions. These include nuclear export of late viral mRNAs, a block of nuclear export of the bulk of cellular mRNAs, and the ubiquitin-mediated degradation of selected proteins, including p53 and Mre11. Degradation of these proteins occurs via a cellular E3 ubiquitin ligase complex that is assembled through interactions between elongins B and C and BC boxes present in E4orf6 to form a cullin 5-based ligase complex. E1B55K, which has been known for some time to associate with the E4orf6 protein, is thought to bind to specific substrate proteins to bring them to the complex for ubiquitination. Earlier studies with E4orf6 mutants indicated that the interaction between the E4orf6 and E1B55K proteins is optimal only when E4orf6 is able to form the ligase complex. These and other observations suggested that most if not all of the functions ascribed to E4orf6 and E1B55K during infection, including the control of mRNA export, are achieved through the degradation of specific substrates by the E4orf6 ubiquitin ligase activity. We have tested this hypothesis through the generation of a virus mutant in which the E4orf6 product is unable to form a ligase complex and indeed have found that this mutant behaves identically to an E4orf6 virus in production of late viral proteins, growth, and export of the late viral L5 mRNA.  相似文献   

6.
Adenovirus genotype 7h was previously reported to be originated from a recombination event between adenovirus genotypes 7p and 3p. Based on those findings, further characterization of other adenovirus 7h strains become important to determine whether all adenovirus 7h strains arose from a single recombinational event. To explore such a possibility, 160 clinical isolates were studied after developing a PCR assay using a primer set designed to amplify the region corresponding to E3-7,7 Kd of adenovirus ADV 7p and E3-9 Kd of adenovirus 3p. The assay was able to differentiate most of the subgenus B strains from adeno 7h with the genotype 3d. The study of several adenovirus 7h clinical isolates revealed the existence of three variants of adeno 7h. One of the variants, 7h3, shows a high degree of similarity with gene E3-9 Kd of ADV 3p, but lacks the corresponding AUG codon. Our results suggest that more than one recombination event may explain the detection of three different types of adenovirus 7h. The genotype variants of adeno 7h were detected in different years, indicating that the recombination events took place independently from each other. The study of the recombination region may allow further understanding of the function of several viral polypeptides in the immune response, and understanding the mechanism involved in virulence associated to adenovirus 7h.  相似文献   

7.
Adenovirus chromatin structure at different stages of infection.   总被引:16,自引:0,他引:16       下载免费PDF全文
We investigated the structure of adenovirus deoxyribonucleic acid (DNA)-protein complexes in nuclei of infected cells by using micrococcal nuclease. Parental (infecting) DNA was digested into multimers which had a unit fragment size that was indistinguishable from the size of the nucleosomal repeat of cellular chromatin. This pattern was maintained in parenteral DNA throughout infection. Similar repeating units were detected in hamster cells that were nonpermissive for human adenovirus and in cells pretreated with n-butyrate. Late in infection, the pattern of digestion of viral DNA was determined by two different experimental approaches. Nuclear DNA was electrophoresed, blotted, and hybridized with labeled viral sequences; in this procedure all virus-specific DNA was detected. This technique revealed a diffuse protected band of viral DNA that was smaller than 160 base pairs, but no discrete multimers. All regions of the genome were represented in the protected DNA. To examine the nuclease protection of newly replicated viral DNA, infected cells were labeled with [3H]thymidine after blocking of cellular DNA synthesis but not viral DNA synthesis. With this procedure we identified a repeating unit which was distinctly different from the cellular nucleosomal repeat. We found broad bands with midpoints at 200, 400, and 600 base pairs, as well as the limit digest material revealed by blotting. High-resolution acrylamide gel electrophoresis revealed that the viral species comprised a series of closely spaced bands ranging in size from less than 30 to 250 base pairs.  相似文献   

8.
The relationship of trehalose metabolism to fungal virulence was explored in the rice blast fungus Magnaporthe grisea. To determine the role of trehalose synthesis in pathogenesis, we identified and deleted TPS1, encoding trehalose-6-phosphate synthase. A Deltatps1 mutant failed to synthesize trehalose, sporulated poorly and was greatly attenuated in pathogenicity. Appressoria produced by Deltatps1 did not develop full turgor or elaborate penetration hyphae efficiently. To determine the role of subsequent trehalose breakdown, we deleted NTH1, which encodes a neutral trehalase. Nth1 mutants infected plants normally, but showed attenuated pathogenicity due to a decreased ability to colonize plant tissue. A second trehalase was also identified, required both for growth on trehalose and mobilization of intracellular trehalose during infection-related development. TRE1 encodes a cell wall-localized enzyme with characteristics of both neutral and acidic trehalases, but is dispensable for pathogenicity. Our results indicate that trehalose synthesis, but not its subsequent breakdown, is required for primary plant infection by M.grisea, while trehalose degradation is important for efficient development of the fungus in plant tissue following initial infection.  相似文献   

9.
Previous studies with adenovirus mutants have indicated that a 10,400-molecular-weight (10.4K) protein predicted to be coded by an open reading frame in region E3 of adenovirus functions to down regulate the epidermal growth factor receptor (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now demonstrate that the 10.4K protein is in fact synthesized in cells infected by group C adenoviruses. This was done by immunoprecipitation of 10.4K from cells infected by a variety of E3 mutants, using antisera against three different synthetic peptides corresponding to the predicted 10.4K sequence. The 10.4K protein was translated primarily from E3 mRNA f, as indicated by cell-free translation of mRNA purified by hybridization from cells infected with an RNA processing mutant that synthesizes predominantly mRNA f. The 10.4K protein was overproduced or underproduced in vivo, respectively, by mutants that overproduce or underproduce E3 mRNA f, also indicating that the 10.4K protein is translated primarily from mRNA f. The 10.4K protein migrated as two bands with apparent molecular weights of 16,000 and 11,000 (10 to 18% gradient gels); both bands contained 10.4K epitopes, as shown by Western blot (immunoblot). Only the 16K band was obtained by cell-free translation, suggesting that the 16K protein is the precursor to the 11K protein. The 10.4K protein is a membrane protein, as shown by cell fractionation experiments and as predicted from its sequence. The predicted 10.4K sequence as well as a putative N-terminal signal sequence and 30-residue transmembrane domain are conserved in adenovirus types 2 and 5 (group C) and in types 3, 7, and 35 (group B).  相似文献   

10.
Infection of KB cells by adenovirus normally results in a drastic reduction of host DNA synthesis at 33 to 37 degrees C. This inhibition was largely reversed by raising the temperature to 41 degrees C. Inhibition was reinstated if the temperature is lowered.  相似文献   

11.
The 19-kDa glycoprotein (gp 19K) coded by early region E3 of adenovirus is of interest as a model for glycoprotein processing and sorting, as well as for the interaction between viral antigens and class I transplantation antigens. In this paper, we show that gp 19K is a major protein synthesized during early stages of infection of human KB cells. We report the purification of gp 19K to near homogeneity, the preparation of a gp 19K antiserum, and structural analyses on the protein. We have determined the DNA sequence of the gp 19K gene in adenovirus type 5 (Ad5) for comparison with the published sequence (Hérissé, J., Courtois, G., and Galibert, F. (1980) Nucleic Acids Res. 8, 2173-2192) of adenovirus type 2 (Ad2). Fragments produced by cyanogen bromide cleavage of Ad2 gp 19K are in accord with the DNA sequence, as are synthetic peptide antibodies targeted to the NH2 terminus of Ad2 gp 19K and the COOH terminus of Ad5 gp 19K. The Ad2 and Ad5 proteins are quite homologous. Conserved features include an NH2-terminal signal sequence, two potential Asn-linked glycosylation sites, and a 20-residue putative transmembrane hydrophobic domain followed by a 15-residue polar domain at the COOH terminus. We show that cleavage of the signal peptide occurs between the 17th and 18th amino acids on both the Ad2 and Ad5 versions of gp 19K and that both potential sites are glycosylated with exclusively high-mannose (as opposed to complex) oligosaccharides. Secondary structure predictions suggest six alpha-helix regions including the signal peptide and transmembrane domain, two or three beta-sheet regions, and about eight beta-turns including the two glycosylation sites and the regions flanking the transmembrane domain.  相似文献   

12.
13.
The E3 regions of adenovirus types 2 and 5, respectively, are known to synthesize proteins of 19,000 Mr (19K) and 11.6K, but information regarding the identity and characterization of other potential E3 proteins encoded by the six remaining open reading frames (ORFs) is lacking. In this study, we show that the last ORF of region E3, which encodes a 14.7K protein, is expressed in adenovirus-infected cells. This information was largely derived from analysis of an E3 deletion mutant (H2dl801) in which an extensive deletion (1,939 base pairs) was found to eliminate all ORFs except for two proteins of 12.5K and 14.7K. The 14.7K protein was translated from RNA isolated from H2dl801-infected cells that had been hybridization selected to E3 DNA; hybridization-selected RNA from wild-type adenovirus type 5-infected cells translated both the 19K and the 14.7K proteins. Moreover, an antiserum directed against a bacterial 14.7K fusion protein (A. E. Tollefson and W. S. M. Wold, J. Virol. 62:33-39, 1988) immunoprecipitated the 14.7K translation product synthesized by wild-type and mutant H2dl801 adenovirus mRNAs.  相似文献   

14.
The mouse adenovirus type 1 contains an unusual E3 region.   总被引:4,自引:6,他引:4       下载免费PDF全文
Since the E3 region of human adenoviruses codes for a series of proteins that are probably involved in viral pathogenesis, the nucleotide sequence for a 3.6-kilobase DNA fragment in the corresponding region (map units 77 through 89) of the mouse adenovirus type 1 genome has been determined. Analysis of the sequence revealed that the genes for the fiber and for the precursor to the hexon-associated protein, pVIII, that usually flank the E3 region, are well conserved. However, many of the open reading frames contained in the E3 region of human adenoviruses between the pVIII and the fiber genes were absent from the mouse adenovirus type 1 genome.  相似文献   

15.
16.
17.
Temperature-sensitive mutants which replicate normally at 33 C but poorly at 39 C were isolated from nitrosoguanidine- or nitrous acid-mutagenized adenovirus 2 by (i) testing the cytopathic effect or inclusion body-forming capacity of random plaque isolates, or (ii) reduced plaque enlargement upon shifting from 33 to 39 C. Thirty-six mutants were isolated with 33 C/39 C plaque ratios varying from 20 to 10-5. Some of these mutants could be arranged into 13 groups by the complementation test. By means of recombination analysis a provisional linear genetic map was constructed.  相似文献   

18.
19.
Human adenovirus mutants that carry a large deletion in early region 4 (E4) are severely defective in the synthesis of viral late proteins. Plasmids that carry intact E4 sequences can complement the late protein synthetic defect of such mutants when introduced into infected cells by transfection, presumably due to the transient expression of E4 products. Cells transfected with cDNA clones capable of expressing E4 open reading frame (ORF) 6, or deletion mutant clones expected to express either E4 ORF 6 or E4 ORF 3, also complement the mutants' defects. Thus, these E4 ORFs can individually satisfy the requirement for E4 products in viral late gene expression, and function effectively in the absence of other E4 products. Some E4 deletion mutants also exhibit a defect in the production of viral DNA. All of the clones that stimulate late gene expression also enhance one such mutant's ability to accumulate viral DNA. Thus, the ORF 3 and ORF 6 products are also individually sufficient to provide an E4 function necessary for normal viral DNA replication in the absence of other E4 products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号