首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atmospheric deposition of phosphorus in Lake Victoria (East Africa)   总被引:2,自引:0,他引:2  
Wet and dry atmospheric fluxes of total phosphorus (TP) and soluble reactive phosphorus (SRP) measured at four sites over a 12-month period were used to estimate lake-wide atmospheric phosphorus (P) deposition to Lake Victoria, East Africa. Atmospheric samples were collected in plastic buckets with top diameter of 25.5 cm by 30 cm deep. The highest P loading rates of 2.7 (TP) and 0.8 (SRP) kg ha–2 year–1 were measured at Mwanza compared to less than 1.9 (TP) and 0.65 (SRP) kg ha–2 year–1 measured in other three sites. By applying these loading rates to the lake surface, it was estimated that 13.5 ktons (13.5 × 103 kg) of TP were deposited annually into the lake from the atmosphere. Thirty-two percent of the total was found to be in the SRP form. Dryfall, a component ignored in previous studies exceeded wet deposition by contributing 75% of the total P input. However, materials deposited by dryfall made a lesser contribution to soluble form of phosphorus, as SRP concentrations in the wet samples were 2–3 times higher than SRP concentrations in dry samples. The annual fluxes of phosphorus measured on the south and western shores of Lake Victoria (1.8–2.7 kg ha–2 year–1) are near the upper range of similar fluxes measured in the tropics. In comparison with the existing estimates of municipal and runoff P inputs from other studies, it is estimated that atmospheric deposition represent 55% of the total phosphorus input to the Lake Victoria. The four sampling sites were fairly clustered and wet and dry P deposition data were collected from shore/land stations and applied to open lake areas to estimate lake-wide P deposition. In this regard, the estimates determined here should be viewed as a first order approximation of actual P load deposited into the lake.  相似文献   

2.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

3.
The effects of lodging and nitrogen rate were studied in a field trial of oilseed rapeBrassica napus L. Lodging decreased seed yield (16%) compared with a frame-raised crop. Yield decreased because of a significant reduction in each of the yield components coupled with a reduced plant population caused by stem breakage at the ground level. Lodging also reduced the final crop dry weight and harvest index. Seed yield was also lower when 200 kg ha–1 nitrogen was applied than with 400 kg ha–1. A general decrease in pod number m–2, seed nuber pod–1 and seed weight caused the lower yields. The use of 400 kg ha–1 of nitrogen changed the contribution of the terminal raceme and individual branches with respect to seed yield. Seed nitrogn content and nitrogen yield increased at the 400 kg ha–1, lowering both seed oil content and oil yield.  相似文献   

4.
A pot and a lysimeter experiment were carried out to study the effects of inoculation of the roots of rice seedlings with R. capsulatus in combination with graded levels of nitrogen (N) fertilizer on growth and yield of the rice variety Giza 176. Inoculation increased all the measured growth parameters and yield attributes, but the statistically significant differences at all N levels tested were only those for plant dry weight, number of productive tillers, grain and straw yields. The absolute increases in grain yield of the pot experiment due to inoculation were 0.63, 0.93 and 1.22 ton ha–1 at 0, 47.6 and 95.2 kg N ha–1, respectively. The results suggest that inoculation along with 47.6 kg N ha–1 can save 50% of the nitrogen fertilizer needed for optimum G176 rice crop. However, inoculation along with 95.2 kg N ha–1 can increase grain yield by about 1.2 ton ha–1. This is probably the first reported evidence of a beneficial effect of phototrophic purple nonsulphur bacteria on rice growth and yield under flooded soil conditions.  相似文献   

5.
Peanut plants (cv. Shulamit) were grown in an Oxisol soil in pots in the glasshouse to assess effects of soil sterilization and inoculation with spores of vesicular-arbuscular mycorrhizal fungi (VAMF) on the response to five rates of phosphorus (0 to 240 kg P ha–1) and two rates of zinc (0 and 10 kg Zn ha–1) fertilizers.Both P and Zn nutrition were affected by VAMF activity but the dominant role of VAMF in this soil type was in uptake of P. In the absence of VAMF there was a clear threshold level of P application (60 kg P ha–1) below which plants grew poorly, which resulted in a sigmoidal response of dry matter to applied P. The maximum response was not fully defined because dry matter production continued to increase up to 240 kg P ha–1. Tissue P concentration of non-mycorrhizal plants increased linearly with P rate and was always significantly less than that in mycorrhizal plants.Mycorrhizal plants responded without threshold to increasing P rate, attaining maximum dry matter at 120 kg P ha–1 in inoculated sterilized soil and at 30 kg P ha–1 in nonsterile soil. These differences in maximal P rates and in the greater dry matter produced in sterile soil at high P rates were attributed to the negative effects of the root-knot nematodeMeloidogyne hapla in nonsterile soil.Plant weight did not respond to zinc fertilizer but tissue Zn concentration increased with applied Zn. Tissue Zn concentration and uptake were increased by VAMF.  相似文献   

6.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

7.
Effect of soil application of eight combinations of NPK fertilizers on the severity of black spot disease (BSD), caused by Alternaria brassicae (Sacc.) Berk., and yield of short duration oilseed rape (Brassica campestris L) were investigated under both pot and field conditions in 1987–88, 1988–89 and 1990–91. The severity of BSD was significantly greater (36–48%) on plants grown in ground treated with NP (N 90 kg ha–1+P 40 kg ha–1) applied as urea and single superphosphate respectively than on plants from the unfertilized control (NoPoKo) (o). However, the severity of BSD was significantly smaller (25–33%) when K (40 kg ha–1) was applied as muriate of potash than in plants from control and NP treatments. The effect of NK (N 90 kg ha–1+K 40 kg ha–1) in decreasing the severity of BSD was increasingly more pronounced than the effects of PK (P 40 kg ha–1+K 40 kg ha–1), NP and K (40 kg ha–1) applications. The decrease in the severity of BSD due to K was due to increased production in plants of phenolics which inhibited conidial germination and decreased sporulation of A. brassicae.The decrease in the severity of BSD due to NK application gave consistently increased seed yield 68% more than those of control and other treatments. The K-fertilized plants also showed increased resistance to lodging, increased 1000-seed weight and decreased seed infection. Seeds obtained from K-fertilized plants showed good seed germinability and vigorous seeding growth.  相似文献   

8.
Restoration of the highly eutrophic Reeuwijk lakes (ca. 700 ha) started in 1986 by reducing the external phosphorus loading. As an additional measure to improve the quality of the lake water, the structure of the fish population in Lake Klein Vogelenzang (18 ha) was altered in 1989 by the removal of ca. 100 kg ha–1 bream from the lake in April and December. This constituted about 50% of the total bream biomass in the lake.The fish-stock reduction in April, 1989, was initially followed by high phosphorus concentrations, probably the result of considerable phosphorus release from the sediments. The resulting heavy algal blooms that occurred reduced the transparency to very low values. During the summer the zooplankton population increased markedly in numbers coinciding with reductions in total suspended matter including (blue-green) algae. A great improvement in Secchi-disc transparency was observed and by the end of December, 1989, the bottom of the lake (1.5–2.0 m) was visible. After heavy storms in January and February 1990, transparency dropped to < 1 m as a result of resuspension of high concentrations of suspended matter from the bottom sediments. Although transparency over the rest of 1990 was higher than in 1988, i.e. the year preceding the removal of fish (biomanipulation), it was lower than expected, based on the results of 1989. The study shows that technical and biological factors can cause serious management problems for the implementation of biomanipulation in larger water bodies.  相似文献   

9.
In 1997 and 1998 we assessed the input and output of suspended matter, nitrogen and phosphorus during the exploitation period of a fishpond in the Domaîne Départemental de Lindre (Moselle, north-eastern France). Special attention was given to the emptying period which was studied under different meteorological conditions (rainy and dry periods). The pond has a surface area of 2 ha, a volume of 16000 m3 and is used for the production of various Cyprinidae (roach, bream, chub, pike, perch, carp). During the emptying operation, 630 and 2830 kg ha–1 of suspended matter, 10.8 and 36.5 kg ha–1 of Total-nitrogen and 1.2 and 5.1 kg ha–1 of Total-phosphorus were discharged from the pond during drought and heavy rainfall (50.5 mm in 166 h), respectively. Except for the emptying period, the pond retained 6850, 117 and 6.6 kg ha–1 of suspended matter, nitrogen and phosphorus, respectively. In the course of the emptying period, more than 32% of the suspended matter was discharged as was 8.5% of the nitrogen and 25% of the phosphate. For the whole exploitation period 4020 – 6220 kg ha–1 of suspended matter, 80–106 kg ha–1 of nitrogen and 1.6–5.5 kg ha–1 of phosphorus accumulated in the pond.  相似文献   

10.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

11.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

12.
Summary Quantitative relationships for key processes influencing N response were derived from measurements of inorganic N in soil, the weights and N contents of foliage and tubers made at intervals during growth of maincrop potatoes in 11 N fertilizer experiments.Apparent mineralization rates (calculated from measurements of N uptake and inorganic N in the top metre and averaged over the growth period) were remarkably similar from site to site despite wide differences in the textures, water contents and organic matter contents of the soils. They were mostly about 0.78 kg N ha–1 m–1 d–1.Inorganic N in the top 50 cm of soil was rapidly removed by the crop until it fell on all sites to a low value (about 4 g N cm–3) which was maintained for the remainder of the growth period. When N fertilizer was applied, growth rate until at least the end of July was always well defined by a single coefficient in a previously derived equation. Average values of this coefficient for each of the soil types and for each of the years in which the experiments were carried out were within 20% of each other.The minimum %N in the dry matter needed to permit maximum growth rate declined with increase in plant weight in a similar manner to that previously found for other crops.Equations were found for the partition of assimilate and of nitrogen between the foliage and tubers. The coefficients in them were little affected by whether or not N fertilizer was applied.According to these relationships the maximum potential dry weight yield of tubers is 20 t ha–1 and requires the crop to contain at least 290 kg N ha–1.  相似文献   

13.
Retention of nutrients in river basins   总被引:1,自引:0,他引:1  
In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha–1 and 0.63 kg P ha–1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export.Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m–2 yr–1 and 3.7–8.3 g P m–2 yr–1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m–2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr–1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr–1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m–2 yr–1 and 0.30 g P m–2 yr–1, respectively, during the period 1989–1995.The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr–1 and that P-retention increased from –0.80 to 0.90 tonnes yr–1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.  相似文献   

14.
T. Penczak 《Hydrobiologia》1985,120(2):159-165
Amounts of C, P, and N consumed by all fish populations were estimated at 9 sites in two small lowland rivers. They mainly depended on fish density and were: 151.8 (27.9–453.3) kgC ha–1a–1, 3.1(0.5–8.8) kgP ha–1 a–1, and 30.3 (5.3–89.9) kg N ha–1 a–1. To build one kg of each of these elements into their body the fish consumed 7.9 ± 1.7 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiEayaara% aaaa!3912!\[{\text{\bar x}}\] ± S.D.) kg of C, 3.1 ± 0.8 kg of P, and 6.6 ± 1.3 kg of N. Thus, phosphorus was assimilated twice more efficiently than carbon and nitrogen. Pools of the three elements, calculated as mean biomass, are: 12.7 (1.2–42.1) kg C ha–1, 0.7(0.1–2.2) kgP ha–1, and 3.0 (0.3–9.7) kgN ha–1 The elements were assimilated especially effectively by young stages of fish.  相似文献   

15.
Lalji Singh 《Plant Ecology》1992,98(2):129-140
The present paper elucidates the pattern of leaf and non-leaf fall and quantifies of the total annual input of litter in a dry tropical forest of India. In addition, concentration of selected nutrients in various litter species and their annual return to the forest floor are examined. Total annual input of litter measured in litter traps ranged between 488.0–671.0 g m-2 of which 65–72% was leaf litter fall and 28–35% wood litter fall. 73–81% leaves fall during the winter season. Herbaceous litter fall ranged between 80.0–110.0 g m-2 yr-1. The annual nutrient return through litter fall amounted (kg ha-1): 51.6–69.6 N, 3.1–4.3 P, 31.0–40.0 Ca, 14.0–19.0 K and 3.7–5.0 Na, of which 71–77% and 23–29% were contributed by leaf and wood litter fall, respectively for different nutrients. Input of nutrients through herbaceous litter was: 13.0–16.6 for N, 1.0–1.4 for P, 4.0–5.0 for Ca, 7.9–10.5 for K and 0.8–1.0 kg ha-1 yr-1 for Na.  相似文献   

16.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

17.
A field incubation technique with acetylene to inhibit nitrification was used to estimate net N mineralization rates in some grassland soils through an annual cycle. Measurements were made on previously long-term grazed pastures on a silty clay loam soil in S.W. England which had background managements of +/– drainage and +/– fertilizer (200 kg N ha–1 yr–1). The effect of fertilizer addition on mineralization during the year of measurement was also determined. Small plots with animals excluded, and with herbage clipped and removed were used as treatment areas and measurements were made using an incubation period of 7 days at intervals of 7 or 14 days through the year. Soil temperature, moisture and mineral N contents were also determined. Mineralization rates fluctuated considerably in each treatment. Maximum daily rates ranged from 1.01 to 3.19 kg N ha–1, and there was substantial net release of N through the winter period (representing, on average, 27% of the annual release). Changes in temperature accounted for 35% of the variability but there was little significant effect of soil moisture. Annual net release of N ranged from 135 kg ha–1 (undrained soil, no previous or current fertilizer) to 376 (drained soil, +200 kg N ha–1 yr–1 previous and current fertilizer addition). Addition of fertilizer N to a previously unfertilized sward significantly increased the net release of N but there was no immediate effect of withholding fertilizer on mineralization during the year in which measurements were made.  相似文献   

18.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

19.
Silvan  Niko  Vasander  Harri  Laine  Jukka 《Plant and Soil》2004,258(1):179-187
Wetland buffers may play an important role in the retention of nitrogen (N) and phosphorus (P) that can be released in large quantities from forestry operations. In this study, we investigated the retention capacity of N and P of wetland vegetation comparing the control area with two experimental areas within one site before and after N and P pulse (45 kg N and 15 kg P) lasting one growing season (ca. 150 d). N and P pulse caused a significant increase in the plant biomass and N and P content in the upper experimental area, which received most of the added nutrients. Added N and P was mainly retained in the above and below ground parts of E. vaginatum, especially in storage organs and roots which form a long-term sink for nutrients. Total N retention in the plant biomass during the first year after N and P treatment ranged from 25.3 kg (equals to 126.7 kg N ha–1) in the upper experimental area to 6.1 kg (20.4 kg N ha–1) in the lower experimental area and 4.7 kg (15.7 kg N ha–1) in the control area. P retention ranged from 2.6 kg (13.1 kg P ha–1) in the upper experimental area to 1.0 kg (3.4 kg P ha–1) in the lower experimental area and 0.5 kg (1.8 kg P ha–1) in the control area. The retained proportions of N and P in the plant biomass in the two experimental areas were approximately 70% of the added N (45 kg N y–1) and approximately 25% of the added P (15 kg P y–1) during the first year after N and P addition in 1999. Our study shows that vigorously colonising and growing vegetation is the main factor in the retention of N, a significant factor in the retention of P in a constructed wetland buffer, and thus an important contributor to the prevention of detrimental effects of N and P leaching on watercourses.  相似文献   

20.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号