首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pamlin, an important extracellular protein required early for sea urchin embryogenesis, is readily isolated from the embryos of Hemicentrotus pulcherrimus . A molecular image analysis of pamlin was conducted using immuno-electron microscopy, rotary shadowing and negative staining technique-applied electron microscopy. The electron microscopy showed that a monoclonal antibody to the pamlin α-subunit bound to a position 13.5 nm from one end of a purified 255 kDa pamlin molecule, which is a 132 nm long and 6.8 nm wide linear structure. The pamlin structure is composed of three subunits, a 47 nm long 52 kDa α-subunit that attaches to one end of a 105 nm long 180 kDa β-subunit, and a 15.6 nm diameter globular 23 kDa γ-subunit that binds to the middle of the β-subunit. The α- and β-subunits together form a 125–140 nm linear structure. Intermolecular aggregation frequently occurred between the free end of two β-subunits of the αβγ pamlin molecule, leaving the entire α-subunit surface free. Occasionally associations between the ends of α-subunits, or between an α-subunit and the middle of a β-subunit also occurred, but no aggregations of pamlin formed through the γ-subunit. These homophilic molecular aggregations of pamlin formed a large supramolecular network. In addition, the single pamlin molecule rounded at one end under high calcium ion concentration to form a 'loop', suggesting the presence of a calcium sensitive region in the molecule.  相似文献   

2.
Abstract Oxaloacetate decarboxylase from Klebsiella pneumoniae is a membrane bound sodium-pumping biotin enzyme. In electron microscopic samples, the enzyme particle appeared rod-like, with a length of about 12.9 nm and a width of about 7.4 nm, and with two submasses. Based on electron microscopic comparison of full-size enzyme molecules and free α-subunits, it is concluded that oxaloacetate decarboxylase contains only one α-subunit per enzyme particle. The α-subunit of the enzyme revealed a subdivision into two domains of different sizes forming a 'cleft'. Electron microscopic affinity labeling with avidin demonstrated that the biotin prosthetic group present on the α-subunit is located in this cleft, close to the complex formed by the β- and γ-subunits. The fact that 'pairs' but no higher specific aggregates could be observed after incubation with avidin, also indicates that only one copy of the α-subunit is present in an oxaloacetate decarboxylase particle.  相似文献   

3.
Abstract The genes oadGAB encoding the oxaloacetate decarboxylase γ, α and β-subunits from Klebsiella pneumoniae were expressed in Escherichia coli . Using different expression vectors, the entire enzyme or its individual subunits were synthesised. The expression was evidenced immunologically in whole cells with polyclonal antibodies raised against the purified oxaloacetate decarboxylase. The expressed α-subunit or a combination of a and β-subunits were shown to reside in the cytoplasm, while the entire oxaloacetate decarboxylase or a γα-complex were located mostly in the cytoplasmic membrane. Interestingly, overexpression of the γα-complex or the entire oxaloacetate decarboxylase in E. coli led to a significant immunogold labelling in the cytoplasm, indicating that the a-subunit was not completely complexed to the membrane-bound γ or βγ-subunits.  相似文献   

4.
In this study, a novel 18-residue linear antimicrobial peptide derived from the central part of the bovine hemoglobin ??-subunit was identified. The peptide was purified by a combination of cationic exchange and reversed-phase high-performance liquid chromatography. The sequence was determined to be VNFKLLSHSLLVTLASHL. The theoretical molecular weight of this peptide was calculated to be 1992.38 Da, which is the same as that determined (1992.401 Da) by matrix-assisted laser desorption ionization mass spectrometry. Sequence analysis showed that there is a high degree of homology in this peptide among hemoglobin ??-subunits of bovine, sheep, deer, porcine, and human. In a radial-diffusion plate assay, this purified peptide exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans.  相似文献   

5.
Abstract: Polyclonal antibodies were raised to the C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α4-subunit. These anti-peptide α4 (517–523) antibodies specifically identified a protein with apparent molecular mass 67 kDa in rat brain membranes. This protein was enriched by immunoaffinity chromatography of brain membrane extracts on Affigel 10 coupled to the anti-peptide α4 (517–523) antibodies and could then be identified by the anti-α4-antibodies as well as by the GABAA receptor subunit-specific monoclonal antibody bd-28. This appears to indicate that the 67-kDa protein is the α4-subunit of GABAA receptors. Intact GABAA receptors appeared to be retained by the immunoaffinity column because other GABAA receptor subunit proteins like the β2/β3-subunits and the γ2-subunit were detected in the immunoaffinity column eluate. Furthermore, in addition to the 67-kDa protein, a 51-kDa protein could be detected by the antibody bd-28 and the anti-peptide α4 (517–523) antibody in the immunoaffinity column eluate. A protein with similar apparent molecular mass was identified by the α1-subunit-specific anti-peptide α1 (1–9) antibody. In contrast to the α1-subunit, the 51-kDa protein identified by the anti-α4 antibody could not be deglycosylated by N -Glycanase. The identity of the 51-kDa protein identified by the anti-α4-antibodies thus must be further investigated.  相似文献   

6.
Abstract: Recombinant GABAA receptors, expressed from α-, β-, and γ2-subunits, are diazepam-insensitive when the α-subunit is either α4 or α6. In situ, diazepam-insensitive receptors containing the α6-subunit are almost exclusively expressed in the granule cell layer of the cerebellum. However, diazepam-insensitive receptors are also expressed in forebrain areas. Here, we report on the presence of diazepam-insensitive GABAA receptors in various brain areas containing the α4-subunit. GABAA receptors immunoprecipitated with a newly developed α4-subunit-specific antiserum displayed a drug binding profile that was indistinguishable from those of α4β2γ2-recombinant receptors and diazepam-insensitive [3H]Ro 15-4513 binding sites in rat brain membranes. In addition, α4-subunit containing receptors and forebrain diazepam-insensitive receptors are present at comparably low abundance in rat brain and exhibit virtually identical patterns of distribution. Analysis of the subunit architecture of α4-subunit containing receptors revealed that the α4-subunit contributes to several receptor subtypes. Depending on the brain region, the α4-subunit can be coassembled with a second type of α4-subunit variant being α1, α2, or α3. The data demonstrate that native receptors containing the α4-subunit are structurally heterogeneous, expressed at very low abundance in the brain, and display the drug binding profile of diazepam-insensitive [3H]Ro 15-4513 binding sites. Pharmacologically, these receptors may contribute to the actions of nonclassical ligands such as Ro 15-4513 and bretazenil.  相似文献   

7.
Abstract: The tryptophan-containing subunit (α-subunit) of bovine brain S-100 protein was purified from a S -aminoethyl derivative of S-100a protein, and its amino acid sequence was determined. The α-subunit contained 93 residues, including one tryptophan, and had a molecular weight of 10,400. The sequence shows an extensive homology (58% identity) to the sequence of another "tryptophan-free" subunit (β-subunit) found in both S-100a and S-100b protein, and has a calcium binding site characteristic of the "E-F hand" proteins, such as calmodulin or troponin C. The tryptophan residue is located at position 90 which is presumably adjacent to the C-terminal end of the α-helix following the calcium binding loop, and thus appears likely to serve as a specific probe in structure-function studies of S-100a protein.  相似文献   

8.
The soybean cultivar Yumeminori, which lacks the α′- and α-subunits of β-conglycinin, carries both naturally occurring and induced mutations. While the cause of the natural mutation resulting in the α′-subunit deficiency has been determined, the induced mutation in the CG-2 gene encoding the α-subunit has not been characterized at the molecular level. In this study, we identified a four base pair insertion in the first exon of CG-2, which introduced a premature stop codon. The insertion co-segregated with the lack of α-subunit, indicating that this mutation is the cause of the α-subunit deficiency. A multiplex PCR method of testing for the presence or absence of α′- and α-subunits was developed based on the sequences of mutated and wild-type alleles. This PCR-based test was also capable of detecting the presence of wild-type genes when Yumeminori DNA samples were contaminated with wild-type DNA at levels of 0.2% or greater. Thus, this method will be useful both for marker-assisted selection in soybean breeding programs, and for seed purity tests in food industries.  相似文献   

9.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

10.
 The 20S proteasome is a multi-subunit protease responsible for the production of peptides presented by major histocompatibility complex (MHC) class I molecules. Recent evidence indicates that an interferon-γ (IFN-γ)-inducible PA28 activator complex enhances the generation of class I binding peptides by altering the cleavage pattern of the proteasome. In the present study, we determined the primary structures of the mouse PA28 α- and β-subunits. The deduced amino acid sequences of the α- and β-subunits were 49% identical. We also determined the primary structure of the mouse PA28 γ-subunit (Ki antigen), a protein of unknown function structurally related to the α- and β-subunits. The amino acid sequence identity of the γ-subunit to the α- and β-subunits was 40% and 32%, respectively. Interspecific backcross mapping showed that the mouse genes coding for the α- and β-subunits (designated Psme1 and Psme2, respectively) are tightly linked and map close to the Atp5g1 locus on chromosome 14. Thus, unlike the LMP2 and LMP7 subunits, the IFN-γ-inducible subunits of PA28 are encoded outside the MHC. The gene coding for the γ-subunit (designated Psme3) was mapped to the vicinity of the Brca1 locus on chromosome 11. A computer search of the DNA databases identified a γ-subunit-like protein in ticks and Caenorhabditis elegans, the organisms with no adaptive immune system. It appears that the IFN-γ-inducible α- and β-subunits emerged by gene duplication from a γ-subunit-like precursor. Received: 11 March 1997  相似文献   

11.
Decay kinetics of the postsynaptic excitatory currents (EPSC), distribution of the antibodies specific to different α-subunits of neuronal nicotinic acetylcholine receptors (nAChR), and the effects of these antibodies on ACh-induced membrane currents were studied in neurons of different autonomic ganglia of rats. It was shown that α3-, α5- and α7-subunits were present in all studied cultured neurons of the rat superior cervical ganglion (SCG), while the α4-subunit was present only in about half of the neurons; this α-subunit distribution differed from that in cultured intracardial neurons of rats. Two nAChR populations were found in rat SCG neurons, and a series of nAChR populations were found in murine superior mesenteric ganglion neurons; they differed in kinetics of their ion channel activity, voltage dependence and the rate of their open channel blockade. The possible functional role of neuronal nAChR heterogeneity is discussed.  相似文献   

12.
13.
Abstract

The pharmacology of native and recombinant GABA-A receptors containing either γ1, γ2 or γ3 subunits has been investigated. The pharmacology of native receptors has been investigated by immunoprecipitating receptors from solubilised preparations of rat brain with antisera specific for individual γ-subunits and analysing their radioligand binding characteristics. Receptors containing a γ1-subunit do not bind benzodiazepine radioligands with high affinity. Those containing either a γ2 or γ3 subunit bind [3H]flumazenil with high affinity. Some compounds compete for these binding sites with multiple affinities, reflecting the presence of populations of receptors containing several different types of α-subunit. Photoaffinity-labelling of GABA-A receptors from a cell line stably expressing GABA-A receptors of composition α1β3γ2 followed by immunoprecipitation of individual subunits revealed that the α and γ but not the β-subunit could be irreversibly labelled by [3H]flunitrazepam.

The properties of recombinant receptors have been investigated in oocytes expressing γ1, γ2, or γ3 subunits in combination with an α and a β-subunit. Some compounds such as zolpidem, DMCM and flunitrazepam show selectivity for receptors containing different γ-subunits. Others such as CL 218,872 show no selectivity between receptors containing different γ-subunits but exhibit selectivity for receptors containing different α-subunits. These data taken together suggest that the benzodiazepine site of the GABA-A receptor is formed with contributions from both the α and γ-subunits.  相似文献   

14.
The α-subunit cDNAs encoding voltage-sensitive sodium channels of human heart (hH1) and rat skeletal muscle (rSkM1) have been expressed in the tsA201 mammalian cell line, in which inactivation properties appear to be normal in contrast to Xenopus oocytes. A series of rSkM1/hH1 chimeric sodium channels has been evaluated to identify the domains of the α-subunits that are responsible for a set of electrophysiological differences between hH1 and rSkM1, namely, midpoints and slope factors of steady-state activation and inactivation, inactivation kinetics and recovery from inactivation kinetics and their voltage-dependence. The phenotype of chimeric channels in which each hH1 domain was successively introduced into a rSkM1 α-subunit framework confirmed the following conclusions. (i) The D4 and or/C-ter. are responsible for the slow inactivation of hH1 sodium channels. (ii) Concerning the other differences between rSkM1 and hH1: steady-state activation and inactivation, kinetics of recovery from inactivation, the phenotypes are determined probably by more than one domain of the α-subunit. Received: 20 January 1998/Revised: 19 March 1998  相似文献   

15.
The Drosophila genome contains at least three loci for the Na,K-ATPase β-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase β-subunit, as its protein product co-precipitates with the Na,K-ATPase α-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the α-subunit and of the β-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase β-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major β-subunit; the visual cells R1–R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, β-subunits do not co-distribute exactly with the α-subunit at some developmental stages, supporting the concept that the α-subunit and β-subunit can exist in the plasma membrane without being engaged in α/β heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the α-subunit to septate junctions throughout development.  相似文献   

16.
The light harvesting biliprotein phycoerythrocyanin isolated from the cyanobacterium Mastigocladus laminosus Cohn was separated into its subunits by isoelectric focusing in a granulated gel in the presence of urea with subsequent renaturation. Smaller amounts of the subunits were obtained from Tolypothrix distorta Kützing var. symplocoides Hansgirg, strain IUCC 424 (now UTEX 424), by chromatography of phycoerythrocyanin on hydroxylapatite. In both cases the isolated α-subunits showed the photoreversible photochemistry characterizing phycochrome b , a photoreversibly photochromic pigment so far found only in extracts of phycoerythrocyanin-containing organisms. Light-induced absorbance changes in the β-subunit and in phycoerythrocyanin were also studied.  相似文献   

17.
F1-ATPase is a catalytic part of the F1Fo-ATP synthase molecular motor. The cooperative hydrolysis of ATP at three catalytic sites of F1-ATPase is accompanied by the rotation of the central γ-subunit inside a cylinder formed by three α-subunits and three β-subunits. Experimental works of different authors have shown that the γ-subunit rotates with irregular dwells. A simple kinetic model suggested in this article provides an explanation as to why dwells occur during the rotation of F1-ATPase. According to this model, rotation dwells happen as a result of deterministic chaos, which in turn occurs at rate constants that are close to those demonstrated experimentally. The time duration of dwells in the model is in agreement with that observed experimentally. Our model explains the known irregular occupancy of catalytic sites of F1-ATPase by nucleotides.  相似文献   

18.
Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, α and β. Although these subunits are highly homologous in sequence, the homo-oligomer of the β-subunit is more thermostable than that of the α-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the β-subunit were more resistant to thermal dissociation than the mutants with that of the α-subunit. Thermostability of a β-subunit mutant whose C-terminal 22 residues were replaced with those of the α-subunit decreased to the comparable level of that of the α-subunit homo-oligomer. These results indicate that the difference in thermostability between α- and β-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.Takao Yoshida, Taro Kanzaki, Ryo Iizuka and Toshihiro Komada contributed equally to this paper.  相似文献   

19.
Abstract: Free and membrane-bound polysomes were prepared from rat forebrain and added to a cell-free system containing rabbit reticulocyte factors and L-[35S]methionine. The translation products were analyzed by two-dimensional gel electrophoresis followed by autoradiography. The free polysomes synthesized actin and at least four major tubulin subunits (α1, α2, β1, and α2) that are found in rat forebrain cytoplasm. The membrane-bound polysomes synthesized predominantly one protein (MB) in the tubulin region of the two-dimensional gel. MB has a molecular weight and isoelectric point similar to α-tubulin. Only trace amounts of α- and β-tubulin and actin were synthesized by the membrane-bound polysomes. MB co-purified with cytoplasmic tubulin after two cycles of aggregation and disaggregation. MB synthesized in vitro (from membrane-bound polysomes) and α- and β-tubulin and actin subunits (synthesized from free polysomes) were digested with Staphylococcus aureus V8 protease, and the resulting peptides were separated by slab gel electrophoresis followed by autoradiography. The peptide pattern of MB was similar but not identical to the peptide patterns of α- and β-tubulin; MB yielded peptides not found in tubulin. We conclude that membrane-bound polysomes from rat forebrain do not synthesize significant amounts of the predominant tubulin subunits synthesized by free polysomes. A major protein (MB) is synthesized by membrane-bound polysomes and is similar, but not identical, to α-tubulin synthesized by free polysomes on the basis of molecular weight, isoelectric point, and peptide analysis.  相似文献   

20.
The photoaffinity spin-labeled ATP analog, 2-N3-SL-adenosine triphosphate (ATP), was used to covalently modify isolated β-subunits from F1-ATPase of the thermophilic bacterium PS3. Approximately 1.2 mol of the nucleotide analog bound to the isolated subunit in the dark. Irradiation leads to covalent incorporation of the nucleotide into the binding site. ESR spectra of the complex show a signal that is typical for protein-immobilized radicals. Addition of isolated α-subunits to the modified β-subunits results in ESR spectra with two new signals indicative of two distinctly different environments of the spin-label, e.g., two distinctly different conformations of the catalytic sites. The relative ratio of the signals is approx 2∶1 in favor of the more closed conformation. The data show for the first time that when nucleotides are bound to isolated β-subunits, binding of α-subunits induces asymmetry in the catalytic sites even in the absence of the γ-subunit. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to PDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号