首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Grobe N  Kutchan TM  Zenk MH 《FEBS letters》2012,586(13):1749-1753
The assumption that CYP2D1 is the corresponding rat cytochrome to human CYP2D6 has been revisited using recombinant proteins in direct enzyme assays. CYP2D1 and 2D2 were incubated with known CYP2D6 substrates, the three morphine precursors thebaine, codeine and (R)-reticuline. Mass spectrometric analysis showed that rat CYP2D2, not 2D1, catalyzed the 3-O-demethylation reaction of thebaine and codeine. In addition, CYP2D2 incubated with (R)-reticuline generated four products corytuberine, pallidine, salutaridine and isoboldine while rat CYP2D1 was completely inactive. This intramolecular phenol-coupling reaction follows the same mechanism as observed for CYP2D6. Michaelis-Menten kinetic parameters revealed high catalytic efficiencies for rat CYP2D2. These findings suggest a critical evaluation of other commonly accepted, however untested, CYP2D1 substrates.  相似文献   

3.
Toxic and pharmacokinetic profiles of drug candidates are evaluated in vivo often using monkeys as experimental animals, and the data obtained are extrapolated to humans. Well understanding physiological properties, including drug-metabolizing enzymes, of monkeys should increase the accuracy of the extrapolation. The present study was performed to compare regio- and stereoselectivity in the oxidation of propranolol (PL), a chiral substrate, by cytochrome P450 2D (CYP2D) enzymes among humans, cynomolgus monkeys and marmosets. Complimentary DNAs encoding human CYP2D6, cynomolgus monkey CYP2D17 and marmoset CYP2D19 were cloned, and their proteins expressed in a yeast cell expression system. The regio- and stereoselective oxidation of PL enantiomers by yeast cell microsomal fractions were compared. In terms of efficiency of expression in the system, the holo-proteins ranked CYP2D6 ≒ CYP2D17 ? CYP2D19. This may be caused by the bulky side chain of the amino acid residue at position 119 (leucine for CYP2D19 vs. valine for CYP2D6 and CYP2D17), which can disturb the incorporation of the heme moiety into the active-site cavity. PL enantiomers were oxidized by all of the enzymes mainly into 4-hydroxyproranolol (4-OH-PL), followed by 5-OH-PL and N-desisopropylpropranolol (NDP). In the kinetic analysis, apparent Km values were commonly in the μM range and substrate enantioselectivity of R-PL < S-PL was observed in both Km and Vmax values for the formation of the three metabolites from PL enantiomers. The activity to produce NDP tended to be higher for the monkey enzymes, particularly CYP2D17, than for the human enzyme. These results indicate that in the oxidation of PL enantiomers by CYP2D enzymes, stereoselectivity is similar but regioselectivity is different between humans and monkeys.  相似文献   

4.
The cytochrome P-450 (CYP) isoenzymes, a superfamily of heme proteins which are the terminal oxidases of the mixed function oxidases system, metabolize more than 70% of all clinically approved drugs. The highly polymorphic CYP2D6 isoform metabolizes more than 25% of most common drugs, and the phenotypes of the 70-plus allelic variants range from compromised to excessive enzymatic activity. Porphyrias are a group of inherited or acquired metabolic disorders of heme biosynthesis, due to a specific decrease in the activity of one of the enzymes of the heme pathway. Clinical signs and symptoms of porphyrias are frequently associated with exposure to precipitating agents, including clinically approved drugs. CYP enzymes, including CYP2D6, participate in the metabolism of some porphyrinogenic drugs, leading to the deregulation of heme biosynthesis. Considering that some of the drugs not recommended for use in porphyric patients are metabolized by CYP2D6, the presence of CYP2D6 polymorphisms in porphyric patients would influence the triggering of the disease when these individuals receive a precipitating agent that is metabolized by CYP2D6. To investigate CYP2D6 polymorphisms in porphyric patients, healthy Argentinean volunteers, porphyric patients, and a group of individuals with high levels of iron were studied. Results indicated that the CYP2D6*3 and CYP2D6*4 alleles, in particular, would be linked to the onset of disease. Predictive genotyping for CYP2D6 in porphyric patients holds promise as a method to improve the clinical efficacy of drug therapy and to personalize drug administration for these patients.  相似文献   

5.
CYP2D6 exhibits genetic polymorphism with interindividual differences in metabolic activity. We have found a significant influence on the pharmacokinetics of venlafaxine by the CYP2D6*10 allele in a Japanese population. CYP2D6.10, which is translated from CYP2D6*10, has two amino acid substitutions: Pro34 --> Ser and Ser486 --> Thr. In this study, CYP2D6.10 was expressed in Saccharomyces cerevisiae and its catalytic activity for CYP2D6 substrates was investigated. The CYP2D6*10B- and *10C-associated cDNA were isolated from human lymphocyte genotyped as CYP2D6*10. In addition, three forms of CYP2D6, Pro34/Thr486 (PT), Ser34/Ser486 (SS), and Pro34/Ser486 (wild type, CYP2D6.1), were constructed by PCR-site mutagenesis to clarify the effects of the two amino-acid substitutions. The expression of CYP2D6 protein was confirmed by immunoblotting using CYP2D antibody. The absorbance at 450 nm was measured by CO-reduced difference spectra from five all microsome preparations. The CYP2D6 forms with Pro34 --> Ser amino acid substitution were at a lower expression than CYP2D6.1 from the findings of immunoblotting and spectral analysis. The apparent K(m) values of CYP2D6.1, CYP2D6.10A, and CYP2D6.10C were 1.7, 8.5, and 49.7 microM, respectively, for bufuralol 1'-hydroxylation, and 9.0, 51.9, and 117.4 microM, respectively, for venlafaxine O-demethylation, respectively. The V(max) values were not significantly different among the three variants. These findings suggest that the decreased in vivo clearance by CYP2D6*10 was caused not only by low expression of but also the increased K(m) value of CYP2D6.  相似文献   

6.
7.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

8.
9.
P450 enzymes are of great interest for drug metabolism and as potential biocatalysts. Like most P450s, purified CYP3A4 is normally handled and stored in solution because lyophilization greatly reduces its activity. We show here that colyophilization of this enzyme with sucrose or trehalose, but not mannitol, crown ethers or cyclodextrins, allow recovery of full enzymatic activity after rehydration. Sorbitol was almost as efficient, with 85% retention of the original activity. We also show that similar protection is observed through colyophilization of CYP2D6 with trehalose. This procedure should greatly facilitate handling, storage, or use of these enzymes in anhydrous media.  相似文献   

10.
Given the threat of resistance of human malaria parasites, including to artemisinin derivatives, new agents are needed. Chloroquine (CQ) has been the most widely used anti-malarial, and new analogs (CQAns) presenting alkynes and side chain variations with high antiplasmodial activity were evaluated. Six diaminealkyne and diaminedialkyne CQAns were evaluated against CQ-resistant (CQ-R) (W2) and CQ-sensitive (CQ-S) (3D7) Plasmodium falciparum parasites in culture. Drug cytotoxicity to a human hepatoma cell line (HepG2) evaluated, allowed to calculate the drug selectivity index (SI), a ratio of drug toxicity to activity in vitro. The CQAns were re-evaluated against CQ-resistant and -sensitive P. berghei parasites in mice using the suppressive test. Docking studies with the CQAns and the human (Hss LDH) or plasmodial lactate dehydrogenase (Pf LDH) enzymes, and, a β-haematin formation assay were performed using a lipid as a catalyst to promote crystallization in vitro. All tested CQAns were highly active against CQ-R P. falciparum parasites, exhibiting half-maximal inhibitory concentration (IC50) values below 1 μΜ. CQAn33 and CQAn37 had the highest SIs. Docking studies revealed the best conformation of CQAn33 inside the binding pocket of Pf LDH; specificity between the residues involved in H-bonds of the Pf LDH with CQAn37. CQAn33 and CQAn37 were also shown to be weak inhibitors of Pf LDH. CQAn33 and CQAn37 inhibited β-haematin formation with either a similar or a 2-fold higher IC50 value, respectively, compared with CQ. CQAn37 was active in mice with P. berghei, reducing parasitaemia by 100%. CQAn33, -39 and -45 also inhibited CQ-resistant P. berghei parasites in mice, whereas high doses of CQ were inactive. The presence of an alkyne group and the size of the side chain affected anti-P. falciparum activity in vitro. Docking studies suggested a mechanism of action other than Pf LDH inhibition. The β-haematin assay suggested the presence of an additional mechanism of action of CQAn33 and CQAn37. Tests with CQAn34, CQAn37, CQAn39 and CQAn45 confirmed previous results against P. berghei malaria in mice, and CQAn33, 39 and 45 were active against CQ-resistant parasites, but CQAn28 and CQAn34 were not. The result likely reflects structure-activity relationships related to the resistant phenotype.  相似文献   

11.
We describe a high-throughput protocol for detecting key polymorphisms in the drug-metabolizing enzyme gene CYP2D6 and a number of linked microsatellites that is both fast and relatively inexpensive to perform. This approach employs GeneScan technology to enable a researcher to determine rapidly the status of seven simple nucleotide polymorphisms in CYP2D6 and also to assay repeat number variation at five closely linked dinucleotide microsatellite loci. The method requires only three PCRs and two GeneScan runs per sample. We anticipate that this will be of value to researchers in three different ways: (1) rapid discrimination of common CYP2D6 alleles, (2) high-resolution haplotyping for association studies involving chromosome 22q13.1 using microsatellite variation, and (3) generation of compound haplotypes for investigating the evolution of CYP2D6 variation. We also report compound haplotype frequencies for an Ashkenazi Jewish and a British sample.  相似文献   

12.
细胞色素P450 2D6缺陷型等位基因的家系分析   总被引:1,自引:1,他引:1  
利用等位基因特民扩增法(ASA)为基础的基因分型法,对细胞色素P4502D6 (CYP2D6)缺陷型等位基因携带者的9个家庭共38个进行了基因分型,并与用右旋美沙芬为 探针的表型分型法进行对比,发现两种方法的结果是一致的,CYP2D6酶缺陷型等位基因呈常染色体隐性遗传。 Abstract:A genotyping method based on the principle of allele-specific amplification and a phenotyping procedure with dextromethorphan as a probe were employed in familial study of nine families with 38 members for the cytochrome P450 2D6(CYP2D6)deficient alleles——CYP2D6A,CYP2D6B,CYP2D6D and CYP2D6T.The results showed that the CYP2D6 deficient alleles were inherited as an autosomal recessive trait.  相似文献   

13.
细胞色素P450 2D6酶缺陷等位基因的分析   总被引:2,自引:0,他引:2  
细胞色素P450 2D6(CYP2D6)第1 795位胸腺嘧啶核苷缺失造成CYP2D6酶活性缺陷,该等位基因被称为CYP2D6T.对该等位基因的测定有助于准确预测CYP2D6表现型.利用等位基因特异扩增法的基本原理,建立了测定CYP2D6T的方法.经396例测定,证明比利用PCR扩增后再酶切的方法更为快捷、更少污染,为该项测定应用于临床奠定基础.  相似文献   

14.
Thirty samples of Indonesian medicinal plants were analyzed for their capacity to inhibit in vitro metabolism by human cytochrome P450 3A4 (CYP3A4) and CYP2D6 with a radiometric assay. The MeOH-soluble fractions of 25 samples, prepared from water extracts, demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, and 21 samples on the metabolism mediated by CYP2D6. Among the MeOH-soluble fractions, Piper nigrum leaf showed the highest inhibitory activity against CYP3A4 (91.7%), and Punica granatum against CYP2D6 (98.1%). The water extracts of which MeOH-soluble fraction showed inhibitory activity more than 70% were fractionated with EtOAc. From the EtOAc-soluble fractions, Curcuma heyneana (67.0%), Pi. cubeba (75.0%), Pi. nigrum fruit (84.0%), Pi. nigrum leaf (85.8%), and Zingiber aromaticum (75.3%) demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, but only Pi. nigrum fruit (72.8%) and Pi. nigrum leaf (69.1%) showed strong inhibitory activity against CYP2D6. For samples that showed more than 70% inhibition, their IC(50) values were determined. The most potent inhibitory activity against CYP3A4 (IC(50) value of 25 microg/ml) was found for the extract of Pi. nigrum leaf, while that of Catharanthus roseus showed the most potent inhibitory effect against CYP2D6 (IC(50) value of 11 microg/ml). These results should indicate once more the possibility of potential medicinal plant-drug interactions.  相似文献   

15.
Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.  相似文献   

16.
17.

Background

The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone''s metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption.

Methods

Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia (PCA) for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6 genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no functionally active CYP2D6 allele), HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6 activity), EM (extensive metabolizers, normal CYP2D6 activity) and UM (ultrarapid metabolizers, increased CYP2D6 activity). Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone. Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses compared to the standard non-CYP dependent opioid piritramide.

Results

Metabolism differed between CYP2D6 genotypes. Mean (95%-CI) oxymophone/oxycodone ratios were 0.10 (0.02/0.19), 0.13 (0.11/0.16), 0.18 (0.16/0.20) and 0.28 (0.07/0.49) in PM, HZ/IM, EM and UM, respectively (p = 0.005). Oxycodone consumption up to the 12th hour was highest in PM (p = 0.005), resulting in lowest equianalgesic doses of piritramide versus oxycodone for PM (1.6 (1.4/1.8); EM and UM 2.2 (2.1/2.3); p<0.001). Pain scores did not differ between genotypes.

Conclusions

In this postoperative setting, the number of functionally active CYP2D6 alleles had an impact on oxycodone metabolism. The genotype also impacted analgesic consumption, thereby causing variation of equianalgesic doses piritramide : oxycodone. Different analgesic needs by genotypes were met by PCA technology in this postoperative cohort.  相似文献   

18.
Towards a polymeric binding mimic for cytochrome CYP2D6   总被引:1,自引:0,他引:1  
A series of fluorescent molecularly imprinted polymers has been prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. Such polymers would have the possibility to form the sensing element in a high-throughput assay for the prediction of CYP2D6 affinity. The imprinted polymers possessed binding-dependent fluorescence. They re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One polymer in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from a drug panel.  相似文献   

19.
20.
1. Human cytochrome P450 (CYP) isoenzymes expressed in a human cell line were used to elucidate their involvement in the metabolism of haloperidol (HAL).2. It was found that CYP3A4 catalyzes the metabolism of HAL to HAL 1,2,3,6-tetrahydropyridine (HTP). HTP is further metabolized to HAL pyridinium (HP+) by both CYP3A4 and CYP2D6.3. CYP3A4 and CYP2D6 are also responsible for the N-dealkylation of HAL. The N-dealkylation of reduced HAL (RH) was observed, which is catalyzed by CYP3A4. In addition, CYP3A4 also catalyzes the oxidation of RH back to HAL.4. These results are discussed in terms of the metabolic interactions of HAL with other drugs and how this knowledge may be used to reduce the movement disorders induced by HAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号