首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Methylamine and ammonia transport in Saccharomyces cerevisiae.   总被引:20,自引:15,他引:5       下载免费PDF全文
Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia.  相似文献   

5.
To investigate substrate recruitment and transport across the Escherichia coli Ammonia transporter B (AmtB) protein, we performed molecular dynamics simulations of the AmtB trimer. We have identified residues important in recruitment of ammonium and intraluminal binding sites selective of ammonium, which provide a means of cation selectivity. Our results indicate that A162 guides translocation of an extraluminal ammonium into the pore lumen. We propose a mechanism for transporting the intraluminally recruited proton back to periplasm. Our mechanism conforms to net transport of ammonia and can explain why ammonia conduction is lost upon mutation of the conserved residue D160. We unify previous suggestions of D160 having either a structural or an ammonium binding function. Finally, our simulations show that the channel lumen is hydrated from the cytoplasmic side via the formation of single file water, while the F107/F215 stack at the inner-most part of the periplasmic vestibule constitutes a hydrophobic filter preventing AmtB from conducting water.  相似文献   

6.
7.
8.
9.
Experiments with carbamoyl phosphate synthetase (ammonia) in solution and in isolated mitochondria are reported which show the following. NH3 rather than NH4+ is the substrate of the enzyme. The apparent Km of NH3 for the purified enzyme is about 38 microM. The apparent Km for NH3 measured in intact isolated mitochondria is about 13 microM. This value was obtained for both coupled and uncoupled mitochondria and was unchanged when the rate of carbamoyl phosphate synthesis was increased 2-fold by incubating uncoupled mitochondria in the presence of 5 mM-N-acetylglutamate. According to the literature, the concentration of NH3 in liver is well below the measured apparent Km. On the basis of this and previous work we conclude that, quantitatively, changes in liver [NH3] and [ornithine] are likely to be the most important factors in the fast regulation of synthesis of carbamoyl phosphate and urea. This conclusion is consistent with all available evidence obtained with isolated mitochondria, isolated hepatocytes, perfused liver and whole animals.  相似文献   

10.
Carbon and ammonia metabolism of Spirillum lipoferum.   总被引:14,自引:11,他引:3       下载免费PDF全文
Intact cells and extracts from Spirillum lipoferum rapidly oxidized malate, succinate, lactate, and pyruvate. Glucose, galactose, fructose, acetate, and citrate did not increase the rate of O2 uptake by cells above the endogenous rate. Cells grown on NH+/4 oxidized the various substrates at about the same rate as did cells grown on N2. Added oxidized nicotinamide adenine dinucleotide generally enhanced O2 uptake by extracts supplied organic acids, whereas oxidized nicotinamide adenine dinucleotide phosphate had little effect. Nitrogenase synthesis repressed by growth of cells in the presence of NH+/4 was derepressed by methionine sulfoximine or methionine sulfone. The total glutamine synthetase activity from N2-grown cells was about eight times that from NH+/4-grown S. lipoferum; the response of glutamate dehydrogenase was the opposite. The total glutamate synthetase activity from N2-grown S. lipoferum was 1.4 to 2.6 times that from NH+/4-grown cells. The levels of poly-beta-hydroxybutyrate and beta-hydroxybutyrate dehydrogenase were elevated in cells grown on N2 as compared with those grown on NH+/4. Cell-free extracts capable of reducing C2H2 have been prepared; both Mg2+ and Mn2+ are required for good activity.  相似文献   

11.
12.
The exchange of ammonia between the atmosphere and the canopy of spring barley crops growing at three levels of nitrogen application (medium N, high N and excessive N) was studied over two consecutive growing seasons by use of micrometeorological techniques. In most cases, ammonia was emitted from the canopy to the atmosphere. The emission started around 2 weeks before anthesis, and peaked about or shortly after anthesis. The volatilization of ammonia only took place in the daytime. During the night-time, atmospheric ammonia was frequently aborbed by the canopy. Occasionally, plants in the medium and high N treatments also absorbed ammonia from the atmosphere during the daytime. Daytime absorption of ammonia never occurred in the excessive N canopy. The loss of ammonia from the canopy amounted in both years to 0.5–1.5 kg NH3-N ha?1 and increased with the N status of the canopy. In agreement with the small losses of ammonia, the content of 15N-labelled nitrogen in the plants did not decline during the grain-filling period. The experimental years were characterized by very favourable conditions for grain dry matter formation, and for re-utilization of nitrogen mobilized from leaves and stems. Consequently, a very high part of the nitrogen in the mature plants was located in grain dry matter (80–84% in 1989; 74–80% in 1990). The efficient re-utilization of nitrogen may have reduced the volatilization of ammonia.  相似文献   

13.
14.
Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.   总被引:6,自引:0,他引:6  
With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate synthase and glutamine synthase in the liver lobule. The mechanisms underlying the different sublobular gene expressions are not yet settled but may involve the development of hepatic architecture, innervation, blood-borne hormonal and metabolic factors. The periportal zone is characterized by a high capacity for uptake and catabolism of amino acids (except glutamate and aspartate) as well as for urea synthesis and gluconeogenesis. On the other hand, glutamine synthesis, ornithine transamination and the uptake of vascular glutamate, aspartate, malate and alpha-ketoglutarate are restricted to a small perivenous hepatocyte population. Accordingly, in the intact liver lobule the major pathways for ammonia detoxication, urea and glutamine synthesis, are anatomically switched behind each other and represent in functional terms the sequence of the periportal low affinity system (urea synthesis) and a previous high affinity system (glutamine synthesis) for ammonia detoxication. Perivenous glutamine synthase-containing hepatocytes ('scavenger cells') act as a high affinity scavenger for the ammonia, which escapes the more upstream urea-synthesizing compartment. Periportal glutaminase acts as a pH- and hormone-modulated ammonia-amplifying system in the mitochondria of periportal hepatocytes. The activity of this amplifying system is one crucial determinant for flux through the urea cycle in view of the high Km (ammonia) of carbamoylphosphate synthase, the rate-controlling enzyme of the urea cycle. The structural and functional organization of glutamine and ammonia-metabolizing pathways in the liver lobule provides one basis for the understanding of a hepatic role in systemic acid base homeostasis. Urea synthesis is a major pathway for irreversible removal of metabolically generated bicarbonate. The lobular organization enables the adjustment of the urea cycle flux and accordingly the rate of irreversible hepatic bicarbonate elimination to the needs of the systemic acid base situation, without the threat of hyperammonemia.  相似文献   

15.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

16.
17.
18.
19.
Glucosamine-6-phosphate synthase catalyses the first and rate-limiting step in hexosamine metabolism, converting fructose 6-phosphate into glucosamine 6-phosphate in the presence of glutamine. The crystal structure of the Escherichia coli enzyme reveals the domain organisation of the homodimeric molecule. The 18 A hydrophobic channel sequestered from the solvent connects the glutaminase and isomerase active sites, and provides a means of ammonia transfer from glutamine to sugar phosphate. The C-terminal decapeptide sandwiched between the two domains plays a central role in the transfer. Based on the structure, a mechanism of enzyme action and self-regulation is proposed. It involves large domain movements triggered by substrate binding that lead to the formation of the channel.  相似文献   

20.
Regulation of phenylalanine ammonia lyase in Rhodotorula glutinis.   总被引:5,自引:0,他引:5       下载免费PDF全文
In the red yeast Rhodotorula glutinis, phenylalanine ammonia lyase (PAL) was induced 10-fold during carbon starvation even in the absence of exogenous phenylalanine, although maximal induction occurred when phenylalanine was the nitrogen (40-fold) or carbon (100-fold) source. Apparent regulatory mutations that affected the expression of PAL were isolated by selecting mutants resistant to the analog p-fluoro-D,L-phenylalanine (PFP). One such mutant, designated FP1, could use phenylalanine as a nitrogen source but not as a carbon source. Similarly, FP1 failed to utilize intermediates of the phenylalanine degradative pathway, namely, benzoate, p-hydroxybenzoate, or 3,4-dihydroxybenzoate, as carbon sources. Although the PFP-resistant mutant contained a low level of PAL, no increase was found when it was grown with phenylalanine as the nitrogen source. A derivative of FP1, FP1a, was isolated that simultaneously regained an inducible PAL and the ability to use phenylalanine, benzoate, p-hydroxybenzoate, and 3,4-dihydroxybenzoate as carbon sources. In addition, when p-hydroxybenzoate was the carbon source, PAL was induced in the mutant FP1a but not in the PFP-sensitive parental strain. We propose that the mutation to PFP resistance occurred in a regulatory gene that controls the entire phenylalanine degradative pathway. Secondary mutations at this locus, as found in strain FP1a, not only restored expression of this pathway, but also altered the induction of PAL by metabolites of this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号