首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.  相似文献   

2.
陈效逑  亓孝  阿杉  徐琳 《生态学报》2011,31(13):3559-3568
研究我国东部亚热带植物群落物候与气候变化的关系,对于揭示东部季风区生态系统对气候变化响应的整体特征和空间分异,具有重要的科学意义。作者利用物候累积频率拟合法对盐城、武汉、合肥、屯溪1982-1996年的植物群落季相阶段进行划分,并分析了季相阶段的时空变化及其与气温的统计关系。结果表明:(1)各站多年平均变绿期、旺盛光合期和休眠期初日均有随海拔升高而推迟的倾向,而多年平均季相阶段长度的空间分异特征不明显。休眠期初日随海拔升高而推迟的事实表明,树木秋季叶变色和落叶除受到气温的影响外,还可能与光照和霜等其它环境因素有关,从而使得海拔升高对秋季物候期提早的影响有所削弱,其生态机制有待进一步研究。(2)各站变绿期初日以提前为主,长度以延长为主;旺盛光合期和凋落期初日均以提前为主,长度延长与缩短参半;休眠期初日提前与推迟参半,长度以缩短为主。(3)各站变绿期和旺盛光合期初日与前期平均气温多呈显著负相关,而凋落期和休眠期初日与前期平均气温相关不显著。利用最佳时段气温-物候回归模型重建的1982-2006年季相阶段初日的时间序列显示,盐城、武汉和屯溪的变绿期初日呈显著提前的趋势,盐城、合肥和武汉旺盛光合期初日也呈显著提前的趋势。值得注意的是,在2002-2006年期间,各站变绿期和旺盛光合期初日均表现出明显推迟的倾向,与各地该时段前期平均气温呈下降的倾向一致。(4)从北亚热带各站到温带北部的哈尔滨,平均每向北1个纬度,多年平均变绿期和旺盛光合期初日分别显著推迟2.7-4.0 d和1.8-2.8 d,而长度则多呈不显著缩短的趋势;凋落期初日提前不显著,但长度显著缩短1.8-2.6 d;休眠期初日显著提前2.9-3.3 d,且长度显著延长5.8-7.0 d。总体上看,上述观测事实符合植物物候空间变化的一般规律,即在生长季节前半段,低纬地区的植物物候早于高纬地区;在生长季节后半段,高纬地区的植物物候早于低纬地区。  相似文献   

3.
王明  桑卫国 《生态科学》2020,39(1):164-175
根据2003-2014年气象数据和暖温带3种乔木(辽东栎、五角枫和核桃楸)和3种灌木(土庄绣线菊、毛叶丁香和六道木)的物候观测数据资料, 采用气候倾向率和回归分析等方法, 观察乔木和灌木物候变化特征的差异, 分析温度、降水以及乔木、灌木的物候变化趋势, 同时对气象因子与乔木和灌木物候期的相关关系进行研究。结果表明: ①研究期间, 北京东灵山平均气温呈不显著的上升趋势, 气候倾向率为0.200℃·10a–1, 春季(3–5月)和夏季(6-8月)温度显著上升; 降水量呈下降趋势, 平均减少71.630 mm·10a–1, 总体呈暖、干的趋势。②3种乔木的生长季长度都缩短, 辽东栎、五角枫和核桃楸平均生长季长度分别缩短50.70 d·10 a–1、29.83 d·10a–1和22.36 d·10a–1。3种灌木的生长季长度也都缩短, 土庄绣线菊、毛叶丁香和六道木的平均生长季长度分别缩短42.55 d·10a–1、42.76 d·10a–1和38.15 d·10a–1。乔木和灌木的物候变化趋势相同, 整体表现为春季物候推迟, 秋季物候提前, 生长季长度都缩短且生长季长度相差不大。乔木和灌木都表现出芽期推迟最明显, 每10年推迟达19天以上。③乔木和灌木各物候期与气温总体表现为负相关, 即气温升高, 物候期提前, 其相关性显示出夏季(6-8月)温度对植被物候期影响较大, 夏季温度与各物候期表现为正相关, 即夏季温度升高, 物候期推迟。同时乔木和灌木与总体降水没有明显的相关关系, 但秋季物候与不同时段降水表现不同的相关性, 由此可知夏季温度变化对木本植物春季物候(出芽期、展叶期和首花期)的影响更大, 而秋季物候(叶变色期和落叶期)受温度和降水共同影响。  相似文献   

4.
Using phenological and normalized difference vegetation index (NDVI) data from 1982 to 1993 at seven sample stations in temperate eastern China, we calculated the cumulative frequency of leaf unfolding and leaf coloration dates for deciduous species every 5 days throughout the study period. Then, we determined the growing season beginning and end dates by computing times when 50% of the species had undergone leaf unfolding and leaf coloration for each station year. Next, we used these beginning and end dates of the growing season as time markers to determine corresponding threshold NDVI values on NDVI curves for the pixels overlaying phenological stations. Based on a cluster analysis, we determined extrapolation areas for each phenological station in every year, and then implemented the spatial extrapolation of growing season parameters from the seven sample stations to all possible meteorological stations in the study area. Results show that spatial patterns of growing season beginning and end dates correlate significantly with spatial patterns of mean air temperatures in spring and autumn, respectively. Contrasting with results from similar studies in Europe and North America, our study suggests that there is a significant delay in leaf coloration dates, along with a less pronounced advance of leaf unfolding dates in different latitudinal zones and the whole area from 1982 to 1993. The growing season has been extended by 1.4–3.6 days per year in the northern zones and by 1.4 days per year across the entire study area on average. The apparent delay in growing season end dates is associated with regional cooling from late spring to summer, while the insignificant advancement in beginning dates corresponds to inconsistent temperature trend changes from late winter to spring. On an interannual basis, growing season beginning and end dates correlate negatively with mean air temperatures from February to April and from May to June, respectively.  相似文献   

5.
Vegetation phenology has a strong effect on terrestrial carbon cycles, local weather, and global radiation partitioning between sensible and latent heat fluxes. Based on phenological data that were collected from a typical steppe ecosystem at Xilingol Grazing and Meteorological Station from 1985 to 2003, we studied the phenological characteristics of Leymus chinensis and Stipa krylovii. We found that the dates for budburst of L. chinensis and S. krylovii were delayed with increasing temperature during winter and spring seasons; these results differed from existing research in which earlier spring events were attributed to the changes in increasing air temperature in winter and spring. The results also suggested that water availability was an important controlling factor for phenology in addition to temperature in grassland plants. The classical cumulative temperature model simulated the phenology well in wet years, but not in the beginning of growing season in all years from 1985 to 2003. The disparity between the simulation and the observation appeared to be related to soil water. Based on our research findings, a water-heat-based phenological model was developed for simulating the beginning of growing season for these two grass species. The simulated results of the new model showed a significant correlation with the observation of beginning date of the growing season, and both mean values of the absolute error were less than 6 days.  相似文献   

6.
中国东部温带植被生长季节的空间外推估计   总被引:2,自引:0,他引:2  
陈效逑  胡冰  喻蓉 《生态学报》2007,27(1):65-74
利用地面植物物候和遥感归一化差值植被指数(NDVI)数据,以及一种物候-遥感外推方法,实现植被生长季节从少数站点到较多站点的空间外推。结果表明:(1)在1982~1993年期间,中国东部温带地区植被生长季节多年平均起讫日期的空间格局与春季和秋季平均气温的空间格局相关显著;(2)在不同纬度带和整个研究区域,植被生长季节结束日期呈显著推迟的趋势,而开始日期则呈不显著提前的趋势,这与欧洲和北美地区植被生长季节开始日期显著提前而结束日期不显著推迟的变化趋势完全不同;(3)北部纬度带的植被生长季节平均每年延长1.4~3.6d,全区的植被生长季节平均每年延长1.4d,与同期北半球和欧亚大陆植被生长季节延长的趋势数值相近;(4)植被生长季节结束日期的显著推迟与晚春至夏季的区域性降温有关,而植被生长季节开始日期的不显著提前则与晚冬至春季气温趋势的不稳定变化有关;(5)在年际变化方面,植被生长季节开始和结束日期分别与2~4月份平均气温和5~6月份平均气温呈负相关关系。  相似文献   

7.
This research aims at developing a remote sensing technique for monitoring the interannual variability of the European larch phenological cycle in the Alpine region of Aosta Valley (Northern Italy) and to evaluate its relationships with climatic factors. Phenological field observations were conducted in eight test sites from 2005 to 2007 to determine the dates of completion of different phenological phases. MODerate Resolution Imaging Spectrometer (MODIS) 250 m 16‐days normalized difference vegetation index (NDVI) time series were fitted with double logistic curves and the dates corresponding to different features of the curves were determined. Comparison with field data showed that the features of the fitted NDVI curve that allowed the best estimate of the start and end of the growing season were the zeroes of its third derivative (MAE of 6 and 4 days, respectively). The start and end of season were also estimated with the spring warming (SW) and growing season index (GSI) phenological models. MODIS start and end of season dates generally agreed with those obtained by the SW and GSI climate‐driven phenological models. However, phenological models provided erroneous results when applied in years with anomalous meteorological conditions. The relationships between interannual variability of the larch phenological cycle and climate were investigated by comparing the mean start and end of season yearly anomalies with air temperature anomalies. A strong linear relationship (R2=0.91) was found between mean spring temperatures and mean start of season dates, with an increase of 1 °C in mean spring temperature leading to a 7‐day anticipation of mean larch bud‐burst date. Leaf coloring dates were found to be best related with mean September temperature (R2=0.77), but with higher spring temperatures appearing to lead to earlier leaf coloring.  相似文献   

8.
Impact of climate change on plant phenology in Mediterranean ecosystems   总被引:1,自引:0,他引:1  
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region.  相似文献   

9.
As a consequence of warming temperatures around the world, spring and autumn phenologies have been shifting, with corresponding changes in the length of the growing season. Our understanding of the spatial and interspecific variation of these changes, however, is limited. Not all species are responding similarly, and there is significant spatial variation in responses even within species. This spatial and interspecific variation complicates efforts to predict phenological responses to ongoing climate change, but must be incorporated in order to build reliable forecasts. Here, we use a long-term dataset (1953–2005) of plant phenological events in spring (flowering and leaf out) and autumn (leaf colouring and leaf fall) throughout Japan and South Korea to build forecasts that account for these sources of variability. Specifically, we used hierarchical models to incorporate the spatial variability in phenological responses to temperature to then forecast species'' overall and site-specific responses to global warming. We found that for most species, spring phenology is advancing and autumn phenology is getting later, with the timing of events changing more quickly in autumn compared with the spring. Temporal trends and phenological responses to temperature in East Asia contrasted with results from comparable studies in Europe, where spring events are changing more rapidly than are autumn events. Our results emphasize the need to study multiple species at many sites to understand and forecast regional changes in phenology.  相似文献   

10.
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process‐based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.  相似文献   

11.
气候变化对内蒙古鄂温克旗典型草原植物物候的影响   总被引:1,自引:0,他引:1  
肖芳  桑婧  王海梅 《生态学报》2020,40(8):2784-2792
植物物候作为气候变化敏感的指示指标,已成为全球气候变化研究的焦点。利用内蒙古典型草原区鄂温克牧业气象试验站1959—2017年的气候资料和1983—2017年的植物物候观测资料,采用趋势倾向率和逐步回归等方法,分析了鄂温克旗气候变化特征,代表性牧草大针茅和羊草返青期、开花期、黄枯期及生长季的变化趋势,并通过偏相关分析探讨了气温、降水和日照时数与牧草生育期的关系,建立了主要牧草物候期的气候模型。结果表明:(1)鄂温克旗近60年平均气温呈极显著波动增加趋势,年降水量和年日照时数的变化很小;(2)30多年来,鄂温克旗大针茅和羊草返青期总体呈推迟趋势,倾向率分别为2.2 d/10a和1.4 d/10a;开花期的变化趋势不明显;黄枯期分别以2.8 d/10a和1.5 d/10a的趋势提前;生长季长度呈明显缩短趋势;(3)3月和4月气温是影响研究区牧草返青最主要的气候因子,气温升高返青期提前;前2个月降水量对大针茅开花期的影响较大;气温升高使得黄枯期提前,而降水量增加则使得黄枯期推迟。  相似文献   

12.
Phenological data and the corresponding meteorological data are collected from the Minqin Desert Botanical Garden. Variations of phenological periods of N. tangutorum (a drought-resistant shrub) are analyzed, and correlations between the starting dates of all phenological periods and the corresponding precipitation, temperature, and relative humidity are discussed. Our conclusions suggest that the growing season of N. tangutorum has been extended by 18.3 days during 1975–2007, which has a significant correlation with yearly average temperatures. Starting and ending dates and duration time of budding period all display no apparent change, while starting date of the remaining spring phenophases shows an advance, and the ending date shows a delay. The duration time of these phenophases shows an apparent increase overall. However, the starting and ending dates of autumn’s phenological events all show a delay, and no clear trend is observed in duration time. Average short-term precipitation, temperature and relative humidity have an apparent influence on the starting date of most phenophases. However, no influences by average long-term precipitation, temperature and relative humidity were observed. The phenological variations of N. tangutorum have a great influence on its growth and reproduction, which will affect efforts to prevent desertification in the Minqin County.  相似文献   

13.
Climate change is inducing changes in the phenological timings of organisms. Genetic diversity could influence phenological responses to climate change, but empirical evidence is very limited. We estimated the regional variation across Japan in flowering and leaf budburst dates of plants based on a dataset of phenological timings from 1953 to 2005. The observed plants' genetic diversities varied according to human cultivation. The within-species variations of phenological response to temperature as well as regional variations were less in the plant populations with lower genetic diversity. Thus, genetic diversity influences the variation in phenological responses of plant populations. Under increased temperatures, low variation in phenological responses may allow drastic changes in the phenology of plant populations with synchronized phenological timings. Our findings indicate that we should pay attention to maintaining genetic diversity of populations to alleviate changes in phenology due to future climate change.  相似文献   

14.
The objectives of this study are to explore the relationships between plant phenology and satellite-sensor-derived measures of greenness, and to advance a new procedure for determining the growing season of land vegetation at the regional scale. Three phenological stations were selected as sample sites to represent different climatic zones and vegetation types in northern China. The mixed data set consists of occurrence dates of all observed phenophases for 50–70 kinds of trees and shrubs from 1983 to 1988. Using these data, we calculated the cumulative frequency of phenophases in every 5-day period (pentad) throughout each year, and also drew the cumulative frequency distribution curve for all station-years, in order to reveal the typical seasonal characteristics of these plant communities. The growing season was set as the time interval between 5% and 95% of the phenological cumulative frequency. Average lengths of the growing season varied between 188 days in the northern, to 259 days in the southern part of the research region. The beginning and end dates of the surface growing season were then applied each year as time thresholds, to determine the corresponding 10-day peak greenness values from normalized difference vegetation index curves for 8-km2 pixels overlying the phenological stations. Our results show that, at the beginning of the growing season, the largest average greenness value occurs in the southern part, then in the northern, and finally the middle part of the research region. In contrast, at the end of the growing season, the largest average greenness value is measured in the northern part, next in the middle and lastly the southern part of the research region. In future studies, these derived NDVI thresholds can be applied to determine the growing season of similar plant communities at other sites, which lack surface phenological data. Received: 29 November 1999 / Revised: 14 March 2000 / Accepted: 15 March 2000  相似文献   

15.
气候变暖引起的植物物候变化影响了陆地生态系统功能和碳循环。目前研究着重关注温带和热带森林物候变化趋势、驱动因素,关于干旱半干旱地区草地物候变化及其对生态系统总初级生产力(gross primary productivity, GPP)影响仍知之甚少。因此,开展草地植物物候与生产力之间的关系研究对预测草地生态系统响应未来气候变化和区域碳循环至关重要。基于1982-2015年气象资料和GIMMS NDVI3g数据,分析了中国温带草原植被返青期(start of the growing season, SGS)和枯黄期(end of the growing season, EGS)变化及其对气候的响应,并借助一阶差分法量化物候对GPP动态变化的贡献。结果表明:(1)季前1-2个月的夜间温度增温会显著提前SGS, 而当月至季前2个月的白天温度对SGS有着微弱的促进作用;季前3个月的累积降水对SGS提前作用最为强烈,累积太阳辐射在各个时期对SGS影响相对较弱。(2)不同季前时间尺度昼夜温度对草地EGS均表现出相反的作用,短期累积降水对EGS起到显著延迟的区域范围最大,太阳辐射随着季前时间的增加对草地枯黄期的延迟作用逐渐转变为提前作用。(3)EGS对草地GPP年际变化趋势的相对贡献率强于返青期。研究结果有助于深化陆地生态系统与气候变化、碳循环之间相互作用的认识,为草地适应未来气候变化和生态建设提供科学依据。  相似文献   

16.
Aims An open-field warming experiment enables us to test the effects of projected temperature increase on change in plant phenology with fewer confounding factors and to study phenological response to temperature ranges beyond natural variability. This study aims to (i) examine the effect of temperature increase on leaf unfolding and senescence of oriental oak (Quercus variabilis Blume) under experimental warming and (ii) measure temperature-related parameters used in estimating phenological response to temperature elevation.Methods Using an open-field warming system with infrared heaters, we increased the air temperature by ~3°C in the warmed plots compared with that of the control plots consistently for 2 years. Leaf unfolding and senescence dates of Q. variabilis seedlings were recorded and temperature-related phenological parameters were analysed.Important findings The timing of leaf unfolding was advanced by 3–8 days (1.1–3.0 days/°C) and the date of leaf senescence was delayed by 14–19 days (5.0–7.3 days/°C) under elevated air temperatures. However, the cumulative degree days (CDD) of leaf unfolding were not significantly changed by experimental warming, which suggest the applicability of a constant CDD value to estimate the change in spring leaf phenology under 3°C warming. Consistent ranges of advancement and temperature sensitivity in spring phenology and delayed autumn phenology and proposed temperature parameters from this study might be applied to predict future phenological change.  相似文献   

17.
Recent studies show advancing onset of plant growing season in many regions for the last several decades. With the well‐established dependence of plant phenology on temperature, these trends are interpreted as an indication of global warming. For several decades, however, other determinants of plant phenology, e.g. varieties and trends in managed systems, may have changed and confounded the phenological trends. In this study, we tested if long‐term changes in phenology of apple (Malus pumila var. domestica) are attributable to long‐term changes in temperature by comparing the phenological response to long‐term trend in air temperature, which is of our interest, with that to year‐to‐year fluctuation in air temperature, which should represent the real effect of temperature on phenology. We collected records of air temperature and phenological events (budding and flowering) in apple from 1977 to 2004 at six locations in Japan. Linear trends in flowering showed advancing rate in the range from 0.21 to 0.35 day yr?1, statistically significant at three locations (P<0.05). We also found a warming trend in mean air temperature throughout March and April, with which flowering was closely correlated, in the range from 0.047 to 0.077 °C yr?1, statistically significant at five locations (P<0.05). We separated the temperature time‐series into two components: a long‐term trend and a year‐to‐year fluctuation, by fitting smoothing spline to the trend and taking the residuals as the anomaly. We then fit a multiple regression model of phenological response to air temperature with separate coefficients for long‐term trend and anomaly. Flowering date responded to the long‐term trend at ?3.8 day °C?1 and to the anomaly at ?4.6 day °C?1. The temperature coefficients were not statistically different from each other or among locations, suggesting that the advance of apple phenology has predominantly been caused by the temperature increase across the locations studied. The same result was also observed with budding.  相似文献   

18.
近20年青藏高原东北部禾本科牧草生育期变化特征   总被引:6,自引:5,他引:6  
利用1988—2010年青藏高原东北部地区5个站点牧草生育期地面观测数据,分析了近20年代表性牧草返青、开花、黄枯期及生长季的变化趋势,并通过偏相关分析探讨了气温和降水对牧草生育期的关系。结果表明,近20年青藏高原东北部牧草生育期北部推迟南部提前的特征明显。南部的三江源区域返青、开花与黄枯期总体呈显著提前趋势,其中曲麻莱羊茅返青期提前的倾向率达到-4 d/10 a,开花期为-13 d/10 a,黄枯期达到-9 d/10 a,且均通过0.01的显著性检验水平。北部环青海湖区域的海北西北针茅生育期则表现出一定的推迟趋势。生长季长度北部地区延长,而南部除甘德(垂穗披碱草)外均呈明显缩短趋势。近20 a黄枯期的变化幅度明显大于返青期,使得生长季长度的变化更多地受黄枯期变化的影响。1月和3月气温是影响研究区牧草返青最主要的气候因子,气温增高返青提前。开花期南北差异明显,北部与同期气温呈明显负相关关系,南部则主要与开花前2—3个月的降水量密切相关,降水增多大部地区开花期提前。此外,降水也是各地牧草黄枯的主要影响因子。  相似文献   

19.
Using Ulmus pumila (Siberian Elm) leaf unfolding and leaf fall phenological data from 46 stations in the temperate zone of China for the period 1986–2005, we detected linear trends in both start and end dates and length of the growing season. Moreover, we defined the optimum length period during which daily mean temperature affects the growing season start and end dates most markedly at each station in order to more precisely and rationally identify responses of the growing season to temperature. On average, the growing season start date advanced significantly at a rate of −4.0 days per decade, whereas the growing season end date was delayed significantly at a rate of 2.2 days per decade and the growing season length was prolonged significantly at a rate of 6.5 days per decade across the temperate zone of China. Thus, the growing season extension was induced mainly by the advancement of the start date. At individual stations, linear trends of the start date correlate negatively with linear trends of spring temperature during the optimum length period, namely, the quicker the spring temperature increased at a station, the quicker the start date advanced. With respect to growing season response to interannual temperature variation, a 1°C increase in spring temperature during the optimum length period may induce an advancement of 2.8 days in the start date of the growing season, whereas a 1°C increase in autumn temperature during the optimum length period may cause a delay of 2.1 days in the end date of the growing season, and a 1°C increase in annual mean temperature may result in a lengthening of the growing season of 9 days across the temperate zone of China. Therefore, the response of the start date to temperature is more sensitive than the response of the end date. At individual stations, the sensitivity of growing season response to temperature depends obviously on local thermal conditions, namely, either the negative response of the start date or the positive response of the end date and growing season length to temperature was stronger at warmer locations than at colder locations. Thus, future regional climate warming may enhance the sensitivity of plant phenological response to temperature, especially in colder regions.  相似文献   

20.
《Global Change Biology》2018,24(8):3537-3545
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life‐span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号