首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several recently published studies have suggested that decreasing VEGF levels result in placental oxidative stress in preeclampsia, although the question as to how decreased VEGF concentrations increase oxidative stress still remains unanswered. Here, we show that VEGF activated Nrf2, the main regulating factor of the intracellular redox balance, in the cytotrophic cell line BeWo. In turn, this activated the production of antioxidative enzymes thioredoxin, thioredoxin reductase, and heme oxygenase-1, which showed a decrease in their expression in the placentas of preeclamptic women. Nevertheless, this activation occurred without oxidative stress stimulus. As a consequence, the activation of Nrf2 protected BeWo cells against H(2)O(2)/Fe(2+)-induced oxidative damage. We further show that VEGF up-regulated the expression of itself. A positive feedback loop was described in which VEGF activated Nrf2 in an ERK1/2-dependent manner; the up-regulation of HO-1 expression by Nrf2 augmented the production of carbon monoxide, which in turn up-regulated VEGF expression. In conclusion, VEGF induces the Nrf2 pathway to protect against oxidative stress and, via a positive feedback loop, to elevate VEGF expression. Therefore, decreased VEGF bioavailability during preeclampsia may result in higher vulnerability to placental oxidative cell damage and a further reduction of VEGF bioavailability, a vicious circle that may end up in preeclampsia.  相似文献   

2.
Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2.  相似文献   

3.
VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells.  相似文献   

4.
Angiogenesis and lymphangiogenesis are regulated by members of the vascular endothelial growth factor (VEGF) family of cytokines, which mediate their effects via tyrosine kinase VEGF receptors -1, -2, and -3. We have used wild-type and mutant forms of VEGFs -A, -B, and -C, a pan-VEGFR tyrosine kinase inhibitor (SU5416) as well as neutralizing anti-VEGFR-2 antibodies, to determine which VEGF receptor(s) are required for bovine endothelial cell invasion and tube formation in vitro. This was compared to the ability of these cytokines to induce expression of members of the plasminogen activator (PA)-plasmin system. We found that cytokines which bind VEGFR-2 (human VEGF-A, human VFM23A, human VEGF-C(deltaNdeltaC), and rat VEGF-C(152)) induced invasion, tube formation, urokinase-type-PA, tissue-type-PA, and PA inhibitor-1, invasion and tube formation as well as signaling via the MAP kinase pathway were efficiently blocked by SU5416 and anti-VEGFR-2 antibodies. In contrast, cytokines and mutants which exclusively bind VEGFR-1 (human VFM17 and human VEGF-B) had no effect on invasion and tube formation or on the regulation of gene expression. We were unable to identify cytokines which selectively stimulate bovine VEGFR-3 in our system. Taken together, these findings point to the central role of VEGFR-2 in the angiogenic signaling pathways induced by VEGF-C(deltaNdeltaC) and VEGF-A.  相似文献   

5.
6.
7.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

8.
Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is an essential step of angiogenesis. It depends in part on the activation of the p38/MAPKAP kinase-2/LIMK1/annexin-A1 (ANXA1) signaling axis. In the present study, we obtained evidence indicating that miR-196a specifically binds to the 3'-UTR region of ANXA1 mRNA to repress its expression. In accordance with the role of ANXA1 in cell migration and angiogenesis, the ectopic expression of miR-196a is associated with decreased cell migration in wound closure assays, and the inhibitory effect of miR-196a is rescued by overexpressing ANXA1. This finding highlights the fact that ANXA1 is a required mediator of VEGF-induced cell migration. miR-196a also reduces the formation of lamellipodia in response to VEGF suggesting that ANXA1 regulates cell migration by securing the formation of lamellipodia at the leading edge of the cell. Additionally, in line with the fact that cell migration is an essential step of angiogenesis, the ectopic expression of miR-196a impairs the formation of capillary-like structures in a tissue-engineered model of angiogenesis. Here again, the effect of miR-196a is rescued by overexpressing ANXA1. Moreover, the presence of miR-196a impairs the VEGF-induced in vivo neo-vascularization in the Matrigel Plug assay. Interestingly, VEGF reduces the expression of miR-196a, which is associated with an increased level of ANXA1. Similarly, the inhibition of miR-196a with an antagomir results in an increased level of ANXA1. We conclude that the VEGF-induced decrease of miR-196a expression may participate to the angiogenic switch by maintaining the expression of ANXA1 to levels required to enable p38-ANXA1-dependent endothelial cell migration and angiogenesis in response to VEGF.  相似文献   

9.
We have recently demonstrated that thrombin-activated FXIII (FXIIIA-subunit), a plasma transglutaminase, activates VEGFR-2 by crosslinking it with the alpha(v)beta(3) integrin on the surface of endothelial cells (EC), thereby stimulating angiogenesis. Tissue transglutaminase (tTG), which is functionally and structurally related to FXIIIA, is expressed by numerous cell types, among them EC. However, its role in EC function has not been fully characterized. In the present study, we investigated the potential involvement of tTG in angiogenesis. Using co-immunoprecipitation and immunofluorescent staining experiments, we observed that tTG forms a complex with VEGFR-2 on the cell surface and within the cytoplasm of EC. Stimulation of EC with VEGF resulted in translocation of the tTG-VEGFR-2 complex from the cytoplasm to the nucleus. In VEGF-treated cells, tTG-VEGFR-2 interaction resulted in incorporation of VEGFR-2 into high molecular weight crosslinked complex (es), as revealed by an antibody against gamma-glutamyl-epsilon-lysine isopeptide bond. tTG -VEGFR-2 association was inhibited by a specific VEGFR-2 protein tyrosine kinase inhibitor (PTKI ), as well as by cystamine, inhibitor of the transglutaminase activity of tTG, but not by bacitracin which inhibits the protein-disulfide isomerase (PDI) activity of tTG. Furthermore, cystamine completely abolished the VEGF-induced nuclear translocation of the tTG-VEGFR-2 complex. Blockade of the crosslinking activity of tTG by cystamine enhanced VEGF-induced migration of EC in Boyden chamber by 31% (P < 0.02), and prolonged VEGF-induced signaling response, as demonstrated by sustained activation of the MAP kinase ERK. Taken together, our findings suggest that endothelial cell tTG might be involved in modulation of the cellular response to VEGF by forming an intracellular complex with VEGFR-2, and mediating its translocation into the nucleus upon VEGF stimulation.  相似文献   

10.
11.
VEGFR-3 is essential for vascular development and maintenance of lymphatic vessel's integrity. Little is known about its cooperative effect with other receptors of the same family. Contrary to VEGFR-2, stimulation of VEGFR-3 by VEGF-C and -D failed to enhance its phosphorylation either in HEK293T or in PAE cells. These ligands were unable to induce angiogenesis of PAEC expressing VEGFR-3 alone. In the presence of VEGFR-2, VEGF-C and -D induced heterodimerization of VEGFR-3 with VEGFR-2. This heterodimerization was associated with enhanced VEGFR-3 phosphorylation and subsequent cellular responses as evidenced by the formation of capillary-like structures in PAE cells and proliferation of primary human endothelial cells expressing both receptors. Taken together, these results show for the first time that VEGFR-3 needs to be associated to VEGFR-2 to induce ligand-dependent cellular responses.  相似文献   

12.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

13.
Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function.  相似文献   

14.
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor β (TGF-β) type I receptor, and endoglin, a TGF-β co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. However, its effects on endothelial cell function and mechanism of action are unclear. Here we demonstrate that anti-hALK1 antibody selectively recognizes human ALK1. The anti-hALK1 antibody interfered with bone morphogenetic protein 9 (BMP9)-induced signaling in endothelial cells. Consistent with this notion, anti-hALK1 antibody was found to compete highly efficiently with the binding of the ALK1 ligand BMP9 and TGF-β to ALK1. Moreover, it prevented BMP9-dependent recruitment of co-receptor endoglin into this angiogenesis-mediating signaling complex. In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.  相似文献   

15.
16.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.  相似文献   

17.
The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.  相似文献   

18.
19.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.  相似文献   

20.
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号